This is an example showing how the scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays.
The dataset used in this example is the 20 newsgroups dataset and should be downloaded from the http://mlcomp.org (free registration required):
http://mlcomp.org/datasets/379Once downloaded unzip the archive somewhere on your filesystem. For instance in:
% mkdir -p ~/data/mlcomp % cd ~/data/mlcomp % unzip /path/to/dataset-379-20news-18828_XXXXX.zip
You should get a folder ~/data/mlcomp/379
with a file named metadata
and subfolders raw
, train
and test
holding the text documents organized by newsgroups.
Then set the MLCOMP_DATASETS_HOME
environment variable pointing to the root folder holding the uncompressed archive:
% export MLCOMP_DATASETS_HOME="~/data/mlcomp"
Then you are ready to run this example using your favorite python shell:
% ipython examples/mlcomp_sparse_document_classification.py
# Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from time import time import sys import os import numpy as np import scipy.sparse as sp import matplotlib.pyplot as plt from sklearn.datasets import load_mlcomp from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.naive_bayes import MultinomialNB print(__doc__) if 'MLCOMP_DATASETS_HOME' not in os.environ: print("MLCOMP_DATASETS_HOME not set; please follow the above instructions") sys.exit(0) # Load the training set print("Loading 20 newsgroups training set... ") news_train = load_mlcomp('20news-18828', 'train') print(news_train.DESCR) print("%d documents" % len(news_train.filenames)) print("%d categories" % len(news_train.target_names)) print("Extracting features from the dataset using a sparse vectorizer") t0 = time() vectorizer = TfidfVectorizer(encoding='latin1') X_train = vectorizer.fit_transform((open(f).read() for f in news_train.filenames)) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_train.shape) assert sp.issparse(X_train) y_train = news_train.target print("Loading 20 newsgroups test set... ") news_test = load_mlcomp('20news-18828', 'test') t0 = time() print("done in %fs" % (time() - t0)) print("Predicting the labels of the test set...") print("%d documents" % len(news_test.filenames)) print("%d categories" % len(news_test.target_names)) print("Extracting features from the dataset using the same vectorizer") t0 = time() X_test = vectorizer.transform((open(f).read() for f in news_test.filenames)) y_test = news_test.target print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_test.shape)
Benchmark classifiers
def benchmark(clf_class, params, name): print("parameters:", params) t0 = time() clf = clf_class(**params).fit(X_train, y_train) print("done in %fs" % (time() - t0)) if hasattr(clf, 'coef_'): print("Percentage of non zeros coef: %f" % (np.mean(clf.coef_ != 0) * 100)) print("Predicting the outcomes of the testing set") t0 = time() pred = clf.predict(X_test) print("done in %fs" % (time() - t0)) print("Classification report on test set for classifier:") print(clf) print() print(classification_report(y_test, pred, target_names=news_test.target_names)) cm = confusion_matrix(y_test, pred) print("Confusion matrix:") print(cm) # Show confusion matrix plt.matshow(cm) plt.title('Confusion matrix of the %s classifier' % name) plt.colorbar() print("Testbenching a linear classifier...") parameters = { 'loss': 'hinge', 'penalty': 'l2', 'n_iter': 50, 'alpha': 0.00001, 'fit_intercept': True, } benchmark(SGDClassifier, parameters, 'SGD') print("Testbenching a MultinomialNB classifier...") parameters = {'alpha': 0.01} benchmark(MultinomialNB, parameters, 'MultinomialNB') plt.show()
Total running time of the script: (0 minutes 0.000 seconds)
mlcomp_sparse_document_classification.py
mlcomp_sparse_document_classification.ipynb
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/text/mlcomp_sparse_document_classification.html