This example visualizes some training loss curves for different stochastic learning strategies, including SGD and Adam. Because of time-constraints, we use several small datasets, for which L-BFGS might be more suitable. The general trend shown in these examples seems to carry over to larger datasets, however.
Note that those results can be highly dependent on the value of learning_rate_init
.
Out:
learning on dataset iris training: constant learning-rate Training set score: 0.980000 Training set loss: 0.096922 training: constant with momentum Training set score: 0.980000 Training set loss: 0.050260 training: constant with Nesterov's momentum Training set score: 0.980000 Training set loss: 0.050277 training: inv-scaling learning-rate Training set score: 0.360000 Training set loss: 0.979983 training: inv-scaling with momentum Training set score: 0.860000 Training set loss: 0.504017 training: inv-scaling with Nesterov's momentum Training set score: 0.860000 Training set loss: 0.504760 training: adam Training set score: 0.980000 Training set loss: 0.046248 learning on dataset digits training: constant learning-rate Training set score: 0.956038 Training set loss: 0.243802 training: constant with momentum Training set score: 0.992766 Training set loss: 0.041297 training: constant with Nesterov's momentum Training set score: 0.993879 Training set loss: 0.042898 training: inv-scaling learning-rate Training set score: 0.638843 Training set loss: 1.855465 training: inv-scaling with momentum Training set score: 0.912632 Training set loss: 0.290584 training: inv-scaling with Nesterov's momentum Training set score: 0.909293 Training set loss: 0.318387 training: adam Training set score: 0.991653 Training set loss: 0.045934 learning on dataset circles training: constant learning-rate Training set score: 0.830000 Training set loss: 0.681498 training: constant with momentum Training set score: 0.940000 Training set loss: 0.163712 training: constant with Nesterov's momentum Training set score: 0.940000 Training set loss: 0.163012 training: inv-scaling learning-rate Training set score: 0.500000 Training set loss: 0.692855 training: inv-scaling with momentum Training set score: 0.510000 Training set loss: 0.688376 training: inv-scaling with Nesterov's momentum Training set score: 0.500000 Training set loss: 0.688593 training: adam Training set score: 0.930000 Training set loss: 0.159988 learning on dataset moons training: constant learning-rate Training set score: 0.850000 Training set loss: 0.342245 training: constant with momentum Training set score: 0.850000 Training set loss: 0.345580 training: constant with Nesterov's momentum Training set score: 0.850000 Training set loss: 0.336284 training: inv-scaling learning-rate Training set score: 0.500000 Training set loss: 0.689729 training: inv-scaling with momentum Training set score: 0.830000 Training set loss: 0.512595 training: inv-scaling with Nesterov's momentum Training set score: 0.830000 Training set loss: 0.513034 training: adam Training set score: 0.850000 Training set loss: 0.334243
print(__doc__) import matplotlib.pyplot as plt from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn import datasets # different learning rate schedules and momentum parameters params = [{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': 0, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9, 'nesterovs_momentum': False, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9, 'nesterovs_momentum': True, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': 0, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9, 'nesterovs_momentum': True, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9, 'nesterovs_momentum': False, 'learning_rate_init': 0.2}, {'solver': 'adam', 'learning_rate_init': 0.01}] labels = ["constant learning-rate", "constant with momentum", "constant with Nesterov's momentum", "inv-scaling learning-rate", "inv-scaling with momentum", "inv-scaling with Nesterov's momentum", "adam"] plot_args = [{'c': 'red', 'linestyle': '-'}, {'c': 'green', 'linestyle': '-'}, {'c': 'blue', 'linestyle': '-'}, {'c': 'red', 'linestyle': '--'}, {'c': 'green', 'linestyle': '--'}, {'c': 'blue', 'linestyle': '--'}, {'c': 'black', 'linestyle': '-'}] def plot_on_dataset(X, y, ax, name): # for each dataset, plot learning for each learning strategy print("\nlearning on dataset %s" % name) ax.set_title(name) X = MinMaxScaler().fit_transform(X) mlps = [] if name == "digits": # digits is larger but converges fairly quickly max_iter = 15 else: max_iter = 400 for label, param in zip(labels, params): print("training: %s" % label) mlp = MLPClassifier(verbose=0, random_state=0, max_iter=max_iter, **param) mlp.fit(X, y) mlps.append(mlp) print("Training set score: %f" % mlp.score(X, y)) print("Training set loss: %f" % mlp.loss_) for mlp, label, args in zip(mlps, labels, plot_args): ax.plot(mlp.loss_curve_, label=label, **args) fig, axes = plt.subplots(2, 2, figsize=(15, 10)) # load / generate some toy datasets iris = datasets.load_iris() digits = datasets.load_digits() data_sets = [(iris.data, iris.target), (digits.data, digits.target), datasets.make_circles(noise=0.2, factor=0.5, random_state=1), datasets.make_moons(noise=0.3, random_state=0)] for ax, data, name in zip(axes.ravel(), data_sets, ['iris', 'digits', 'circles', 'moons']): plot_on_dataset(*data, ax=ax, name=name) fig.legend(ax.get_lines(), labels=labels, ncol=3, loc="upper center") plt.show()
Total running time of the script: (0 minutes 5.713 seconds)
plot_mlp_training_curves.py
plot_mlp_training_curves.ipynb
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_training_curves.html