Plot the decision boundaries of a VotingClassifier
for two features of the Iris dataset.
Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by the VotingClassifier
.
First, three exemplary classifiers are initialized (DecisionTreeClassifier
, KNeighborsClassifier
, and SVC
) and used to initialize a soft-voting VotingClassifier
with weights [2, 1, 2]
, which means that the predicted probabilities of the DecisionTreeClassifier
and SVC
count 5 times as much as the weights of the KNeighborsClassifier
classifier when the averaged probability is calculated.
print(__doc__) from itertools import product import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.ensemble import VotingClassifier # Loading some example data iris = datasets.load_iris() X = iris.data[:, [0, 2]] y = iris.target # Training classifiers clf1 = DecisionTreeClassifier(max_depth=4) clf2 = KNeighborsClassifier(n_neighbors=7) clf3 = SVC(kernel='rbf', probability=True) eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)], voting='soft', weights=[2, 1, 2]) clf1.fit(X, y) clf2.fit(X, y) clf3.fit(X, y) eclf.fit(X, y) # Plotting decision regions x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) f, axarr = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10, 8)) for idx, clf, tt in zip(product([0, 1], [0, 1]), [clf1, clf2, clf3, eclf], ['Decision Tree (depth=4)', 'KNN (k=7)', 'Kernel SVM', 'Soft Voting']): Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.4) axarr[idx[0], idx[1]].scatter(X[:, 0], X[:, 1], c=y, alpha=0.8) axarr[idx[0], idx[1]].set_title(tt) plt.show()
Total running time of the script: (0 minutes 0.322 seconds)
plot_voting_decision_regions.py
plot_voting_decision_regions.ipynb
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/ensemble/plot_voting_decision_regions.html