The 64-bit floating point type.
impl f64
[src]
fn is_nan(self) -> bool
Returns true
if this value is NaN
and false otherwise.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; assert!(nan.is_nan()); assert!(!f.is_nan());
fn is_infinite(self) -> bool
Returns true
if this value is positive infinity or negative infinity and false otherwise.
use std::f64; let f = 7.0f64; let inf = f64::INFINITY; let neg_inf = f64::NEG_INFINITY; let nan = f64::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());
fn is_finite(self) -> bool
Returns true
if this number is neither infinite nor NaN
.
use std::f64; let f = 7.0f64; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());
fn is_normal(self) -> bool
Returns true
if the number is neither zero, infinite, subnormal, or NaN
.
use std::f64; let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 let max = f64::MAX; let lower_than_min = 1.0e-308_f64; let zero = 0.0f64; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f64::NAN.is_normal()); assert!(!f64::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());
fn classify(self) -> FpCategory
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);
fn integer_decode(self) -> (u64, i16, i8)
Returns the mantissa, base 2 exponent, and sign as integers, respectively. The original number can be recovered by sign * mantissa * 2 ^ exponent
. The floating point encoding is documented in the Reference.
#![feature(float_extras)] let num = 2.0f64; // (8388608, -22, 1) let (mantissa, exponent, sign) = num.integer_decode(); let sign_f = sign as f64; let mantissa_f = mantissa as f64; let exponent_f = num.powf(exponent as f64); // 1 * 8388608 * 2^(-22) == 2 let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); assert!(abs_difference < 1e-10);
fn floor(self) -> f64
Returns the largest integer less than or equal to a number.
let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);
fn ceil(self) -> f64
Returns the smallest integer greater than or equal to a number.
let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);
fn round(self) -> f64
Returns the nearest integer to a number. Round half-way cases away from 0.0
.
let f = 3.3_f64; let g = -3.3_f64; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);
fn trunc(self) -> f64
Returns the integer part of a number.
let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);
fn fract(self) -> f64
Returns the fractional part of a number.
let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);
fn abs(self) -> f64
Computes the absolute value of self
. Returns NAN
if the number is NAN
.
use std::f64; let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan());
fn signum(self) -> f64
Returns a number that represents the sign of self
.
1.0
if the number is positive, +0.0
or INFINITY
-1.0
if the number is negative, -0.0
or NEG_INFINITY
NAN
if the number is NAN
use std::f64; let f = 3.5_f64; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan());
fn is_sign_positive(self) -> bool
Returns true
if self
's sign bit is positive, including +0.0
and INFINITY
.
use std::f64; let nan: f64 = f64::NAN; let f = 7.0_f64; let g = -7.0_f64; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive()); // Requires both tests to determine if is `NaN` assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
fn is_positive(self) -> bool
fn is_sign_negative(self) -> bool
Returns true
if self
's sign is negative, including -0.0
and NEG_INFINITY
.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; let g = -7.0_f64; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative()); // Requires both tests to determine if is `NaN`. assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
fn is_negative(self) -> bool
fn mul_add(self, a: f64, b: f64) -> f64
Fused multiply-add. Computes (self * a) + b
with only one rounding error. This produces a more accurate result with better performance than a separate multiplication operation followed by an add.
let m = 10.0_f64; let x = 4.0_f64; let b = 60.0_f64; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10);
fn recip(self) -> f64
Takes the reciprocal (inverse) of a number, 1/x
.
let x = 2.0_f64; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10);
fn powi(self, n: i32) -> f64
Raises a number to an integer power.
Using this function is generally faster than using powf
let x = 2.0_f64; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10);
fn powf(self, n: f64) -> f64
Raises a number to a floating point power.
let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10);
fn sqrt(self) -> f64
Takes the square root of a number.
Returns NaN if self
is a negative number.
let positive = 4.0_f64; let negative = -4.0_f64; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan());
fn exp(self) -> f64
Returns e^(self)
, (the exponential function).
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn exp2(self) -> f64
Returns 2^(self)
.
let f = 2.0_f64; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10);
fn ln(self) -> f64
Returns the natural logarithm of the number.
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn log(self, base: f64) -> f64
Returns the logarithm of the number with respect to an arbitrary base.
let ten = 10.0_f64; let two = 2.0_f64; // log10(10) - 1 == 0 let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); // log2(2) - 1 == 0 let abs_difference_2 = (two.log(2.0) - 1.0).abs(); assert!(abs_difference_10 < 1e-10); assert!(abs_difference_2 < 1e-10);
fn log2(self) -> f64
Returns the base 2 logarithm of the number.
let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn log10(self) -> f64
Returns the base 10 logarithm of the number.
let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn to_degrees(self) -> f64
Converts radians to degrees.
use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10);
fn to_radians(self) -> f64
Converts degrees to radians.
use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10);
fn ldexp(x: f64, exp: isize) -> f64
Constructs a floating point number of x*2^exp
.
#![feature(float_extras)] // 3*2^2 - 12 == 0 let abs_difference = (f64::ldexp(3.0, 2) - 12.0).abs(); assert!(abs_difference < 1e-10);
fn frexp(self) -> (f64, isize)
Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
self = x * 2^exp
0.5 <= abs(x) < 1.0
#![feature(float_extras)] let x = 4.0_f64; // (1/2)*2^3 -> 1 * 8/2 -> 4.0 let f = x.frexp(); let abs_difference_0 = (f.0 - 0.5).abs(); let abs_difference_1 = (f.1 as f64 - 3.0).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);
fn next_after(self, other: f64) -> f64
Returns the next representable floating-point value in the direction of other
.
#![feature(float_extras)] let x = 1.0f64; let abs_diff = (x.next_after(2.0) - 1.0000000000000002220446049250313_f64).abs(); assert!(abs_diff < 1e-10);
fn max(self, other: f64) -> f64
Returns the maximum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y);
If one of the arguments is NaN, then the other argument is returned.
fn min(self, other: f64) -> f64
Returns the minimum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x);
If one of the arguments is NaN, then the other argument is returned.
fn abs_sub(self, other: f64) -> f64
The positive difference of two numbers.
self <= other
: 0:0
self - other
let x = 3.0_f64; let y = -3.0_f64; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);
fn cbrt(self) -> f64
Takes the cubic root of a number.
let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10);
fn hypot(self, other: f64) -> f64
Calculates the length of the hypotenuse of a right-angle triangle given legs of length x
and y
.
let x = 2.0_f64; let y = 3.0_f64; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10);
fn sin(self) -> f64
Computes the sine of a number (in radians).
use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn cos(self) -> f64
Computes the cosine of a number (in radians).
use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn tan(self) -> f64
Computes the tangent of a number (in radians).
use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14);
fn asin(self) -> f64
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10);
fn acos(self) -> f64
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10);
fn atan(self) -> f64
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn atan2(self, other: f64) -> f64
Computes the four quadrant arctangent of self
(y
) and other
(x
).
x = 0
, y = 0
: 0
x >= 0
: arctan(y/x)
-> [-pi/2, pi/2]
y >= 0
: arctan(y/x) + pi
-> (pi/2, pi]
y < 0
: arctan(y/x) - pi
-> (-pi, -pi/2)
use std::f64; let pi = f64::consts::PI; // All angles from horizontal right (+x) // 45 deg counter-clockwise let x1 = 3.0_f64; let y1 = -3.0_f64; // 135 deg clockwise let x2 = -3.0_f64; let y2 = 3.0_f64; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10);
fn sin_cos(self) -> (f64, f64)
Simultaneously computes the sine and cosine of the number, x
. Returns (sin(x), cos(x))
.
use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);
fn exp_m1(self) -> f64
Returns e^(self) - 1
in a way that is accurate even if the number is close to zero.
let x = 7.0_f64; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10);
fn ln_1p(self) -> f64
Returns ln(1+n)
(natural logarithm) more accurately than if the operations were performed separately.
use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn sinh(self) -> f64
Hyperbolic sine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10);
fn cosh(self) -> f64
Hyperbolic cosine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10);
fn tanh(self) -> f64
Hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10);
fn asinh(self) -> f64
Inverse hyperbolic sine function.
let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);
fn acosh(self) -> f64
Inverse hyperbolic cosine function.
let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);
fn atanh(self) -> f64
Inverse hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference < 1.0e-10);
impl PartialEq<f64> for f64
[src]
fn eq(&self, other: &f64) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &f64) -> bool
This method tests for !=
.
impl One for f64
[src]
fn one() -> f64
The "one" (usually, multiplicative identity) for this type.
impl RemAssign<f64> for f64
fn rem_assign(&mut self, other: f64)
The method for the %=
operator
impl Default for f64
[src]
fn default() -> f64
Returns the "default value" for a type. Read more
impl Clone for f64
[src]
fn clone(&self) -> f64
Returns a deep copy of the value.
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
impl LowerExp for f64
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter.
impl DivAssign<f64> for f64
fn div_assign(&mut self, other: f64)
The method for the /=
operator
impl Display for f64
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter.
impl Product<f64> for f64
fn product<I>(iter: I) -> f64 where I: Iterator<Item=f64>
Method which takes an iterator and generates Self
from the elements by multiplying the items. Read more
impl<'a> Product<&'a f64> for f64
fn product<I>(iter: I) -> f64 where I: Iterator<Item=&'a f64>
Method which takes an iterator and generates Self
from the elements by multiplying the items. Read more
impl FromStr for f64
[src]
type Err = ParseFloatError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<f64, ParseFloatError>
Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
Leading and trailing whitespace represent an error.
Err(ParseFloatError)
if the string did not represent a valid number. Otherwise, Ok(n)
where n
is the floating-point number represented by src
.
impl MulAssign<f64> for f64
fn mul_assign(&mut self, other: f64)
The method for the *=
operator
impl Sum<f64> for f64
fn sum<I>(iter: I) -> f64 where I: Iterator<Item=f64>
Method which takes an iterator and generates Self
from the elements by "summing up" the items. Read more
impl<'a> Sum<&'a f64> for f64
fn sum<I>(iter: I) -> f64 where I: Iterator<Item=&'a f64>
Method which takes an iterator and generates Self
from the elements by "summing up" the items. Read more
impl From<i8> for f64
fn from(small: i8) -> f64
Performs the conversion.
impl From<i16> for f64
fn from(small: i16) -> f64
Performs the conversion.
impl From<i32> for f64
fn from(small: i32) -> f64
Performs the conversion.
impl From<u8> for f64
fn from(small: u8) -> f64
Performs the conversion.
impl From<u16> for f64
fn from(small: u16) -> f64
Performs the conversion.
impl From<u32> for f64
fn from(small: u32) -> f64
Performs the conversion.
impl From<f32> for f64
fn from(small: f32) -> f64
Performs the conversion.
impl Neg for f64
[src]
type Output = f64
The resulting type after applying the -
operator
fn neg(self) -> f64
The method for the unary -
operator
impl<'a> Neg for &'a f64
[src]
type Output = f64::Output
The resulting type after applying the -
operator
fn neg(self) -> f64::Output
The method for the unary -
operator
impl Rem<f64> for f64
[src]
type Output = f64
The resulting type after applying the %
operator
fn rem(self, other: f64) -> f64
The method for the %
operator
impl<'a> Rem<f64> for &'a f64
[src]
type Output = f64::Output
The resulting type after applying the %
operator
fn rem(self, other: f64) -> f64::Output
The method for the %
operator
impl<'a> Rem<&'a f64> for f64
[src]
type Output = f64::Output
The resulting type after applying the %
operator
fn rem(self, other: &'a f64) -> f64::Output
The method for the %
operator
impl<'a, 'b> Rem<&'a f64> for &'b f64
[src]
type Output = f64::Output
The resulting type after applying the %
operator
fn rem(self, other: &'a f64) -> f64::Output
The method for the %
operator
impl Div<f64> for f64
[src]
type Output = f64
The resulting type after applying the /
operator
fn div(self, other: f64) -> f64
The method for the /
operator
impl<'a> Div<f64> for &'a f64
[src]
type Output = f64::Output
The resulting type after applying the /
operator
fn div(self, other: f64) -> f64::Output
The method for the /
operator
impl<'a> Div<&'a f64> for f64
[src]
type Output = f64::Output
The resulting type after applying the /
operator
fn div(self, other: &'a f64) -> f64::Output
The method for the /
operator
impl<'a, 'b> Div<&'a f64> for &'b f64
[src]
type Output = f64::Output
The resulting type after applying the /
operator
fn div(self, other: &'a f64) -> f64::Output
The method for the /
operator
impl Mul<f64> for f64
[src]
type Output = f64
The resulting type after applying the *
operator
fn mul(self, other: f64) -> f64
The method for the *
operator
impl<'a> Mul<f64> for &'a f64
[src]
type Output = f64::Output
The resulting type after applying the *
operator
fn mul(self, other: f64) -> f64::Output
The method for the *
operator
impl<'a> Mul<&'a f64> for f64
[src]
type Output = f64::Output
The resulting type after applying the *
operator
fn mul(self, other: &'a f64) -> f64::Output
The method for the *
operator
impl<'a, 'b> Mul<&'a f64> for &'b f64
[src]
type Output = f64::Output
The resulting type after applying the *
operator
fn mul(self, other: &'a f64) -> f64::Output
The method for the *
operator
impl Debug for f64
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter.
impl SubAssign<f64> for f64
fn sub_assign(&mut self, other: f64)
The method for the -=
operator
impl Sub<f64> for f64
[src]
type Output = f64
The resulting type after applying the -
operator
fn sub(self, other: f64) -> f64
The method for the -
operator
impl<'a> Sub<f64> for &'a f64
[src]
type Output = f64::Output
The resulting type after applying the -
operator
fn sub(self, other: f64) -> f64::Output
The method for the -
operator
impl<'a> Sub<&'a f64> for f64
[src]
type Output = f64::Output
The resulting type after applying the -
operator
fn sub(self, other: &'a f64) -> f64::Output
The method for the -
operator
impl<'a, 'b> Sub<&'a f64> for &'b f64
[src]
type Output = f64::Output
The resulting type after applying the -
operator
fn sub(self, other: &'a f64) -> f64::Output
The method for the -
operator
impl Add<f64> for f64
[src]
type Output = f64
The resulting type after applying the +
operator
fn add(self, other: f64) -> f64
The method for the +
operator
impl<'a> Add<f64> for &'a f64
[src]
type Output = f64::Output
The resulting type after applying the +
operator
fn add(self, other: f64) -> f64::Output
The method for the +
operator
impl<'a> Add<&'a f64> for f64
[src]
type Output = f64::Output
The resulting type after applying the +
operator
fn add(self, other: &'a f64) -> f64::Output
The method for the +
operator
impl<'a, 'b> Add<&'a f64> for &'b f64
[src]
type Output = f64::Output
The resulting type after applying the +
operator
fn add(self, other: &'a f64) -> f64::Output
The method for the +
operator
impl Zero for f64
[src]
fn zero() -> f64
The "zero" (usually, additive identity) for this type.
impl AddAssign<f64> for f64
fn add_assign(&mut self, other: f64)
The method for the +=
operator
impl UpperExp for f64
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter.
impl PartialOrd<f64> for f64
[src]
fn partial_cmp(&self, other: &f64) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, other: &f64) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, other: &f64) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn ge(&self, other: &f64) -> bool
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
fn gt(&self, other: &f64) -> bool
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/primitive.f64.html