W3cubDocs

/Rust

Primitive Type f64

The 64-bit floating point type.

See also the std::f64 module.

Methods

impl f64 [src]

Returns true if this value is NaN and false otherwise.

use std::f64;

let nan = f64::NAN;
let f = 7.0_f64;

assert!(nan.is_nan());
assert!(!f.is_nan());

Returns true if this value is positive infinity or negative infinity and false otherwise.

use std::f64;

let f = 7.0f64;
let inf = f64::INFINITY;
let neg_inf = f64::NEG_INFINITY;
let nan = f64::NAN;

assert!(!f.is_infinite());
assert!(!nan.is_infinite());

assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());

Returns true if this number is neither infinite nor NaN.

use std::f64;

let f = 7.0f64;
let inf: f64 = f64::INFINITY;
let neg_inf: f64 = f64::NEG_INFINITY;
let nan: f64 = f64::NAN;

assert!(f.is_finite());

assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());

Returns true if the number is neither zero, infinite, subnormal, or NaN.

use std::f64;

let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0f64;

assert!(min.is_normal());
assert!(max.is_normal());

assert!(!zero.is_normal());
assert!(!f64::NAN.is_normal());
assert!(!f64::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());

Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.

use std::num::FpCategory;
use std::f64;

let num = 12.4_f64;
let inf = f64::INFINITY;

assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);

Deprecated since 1.11.0: never really came to fruition and easily implementable outside the standard library 🔬 This is a nightly-only experimental API. (float_extras #27752)signature is undecided

Returns the mantissa, base 2 exponent, and sign as integers, respectively. The original number can be recovered by sign * mantissa * 2 ^ exponent. The floating point encoding is documented in the Reference.

#![feature(float_extras)]

let num = 2.0f64;

// (8388608, -22, 1)
let (mantissa, exponent, sign) = num.integer_decode();
let sign_f = sign as f64;
let mantissa_f = mantissa as f64;
let exponent_f = num.powf(exponent as f64);

// 1 * 8388608 * 2^(-22) == 2
let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();

assert!(abs_difference < 1e-10);

Returns the largest integer less than or equal to a number.

let f = 3.99_f64;
let g = 3.0_f64;

assert_eq!(f.floor(), 3.0);
assert_eq!(g.floor(), 3.0);

Returns the smallest integer greater than or equal to a number.

let f = 3.01_f64;
let g = 4.0_f64;

assert_eq!(f.ceil(), 4.0);
assert_eq!(g.ceil(), 4.0);

Returns the nearest integer to a number. Round half-way cases away from 0.0.

let f = 3.3_f64;
let g = -3.3_f64;

assert_eq!(f.round(), 3.0);
assert_eq!(g.round(), -3.0);

Returns the integer part of a number.

let f = 3.3_f64;
let g = -3.7_f64;

assert_eq!(f.trunc(), 3.0);
assert_eq!(g.trunc(), -3.0);

Returns the fractional part of a number.

let x = 3.5_f64;
let y = -3.5_f64;
let abs_difference_x = (x.fract() - 0.5).abs();
let abs_difference_y = (y.fract() - (-0.5)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

Computes the absolute value of self. Returns NAN if the number is NAN.

use std::f64;

let x = 3.5_f64;
let y = -3.5_f64;

let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

assert!(f64::NAN.abs().is_nan());

Returns a number that represents the sign of self.

  • 1.0 if the number is positive, +0.0 or INFINITY
  • -1.0 if the number is negative, -0.0 or NEG_INFINITY
  • NAN if the number is NAN
use std::f64;

let f = 3.5_f64;

assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);

assert!(f64::NAN.signum().is_nan());

Returns true if self's sign bit is positive, including +0.0 and INFINITY.

use std::f64;

let nan: f64 = f64::NAN;

let f = 7.0_f64;
let g = -7.0_f64;

assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
// Requires both tests to determine if is `NaN`
assert!(!nan.is_sign_positive() && !nan.is_sign_negative());

Deprecated since 1.0.0: renamed to is_sign_positive

Returns true if self's sign is negative, including -0.0 and NEG_INFINITY.

use std::f64;

let nan = f64::NAN;

let f = 7.0_f64;
let g = -7.0_f64;

assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
// Requires both tests to determine if is `NaN`.
assert!(!nan.is_sign_positive() && !nan.is_sign_negative());

Deprecated since 1.0.0: renamed to is_sign_negative

Fused multiply-add. Computes (self * a) + b with only one rounding error. This produces a more accurate result with better performance than a separate multiplication operation followed by an add.

let m = 10.0_f64;
let x = 4.0_f64;
let b = 60.0_f64;

// 100.0
let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();

assert!(abs_difference < 1e-10);

Takes the reciprocal (inverse) of a number, 1/x.

let x = 2.0_f64;
let abs_difference = (x.recip() - (1.0/x)).abs();

assert!(abs_difference < 1e-10);

Raises a number to an integer power.

Using this function is generally faster than using powf

let x = 2.0_f64;
let abs_difference = (x.powi(2) - x*x).abs();

assert!(abs_difference < 1e-10);

Raises a number to a floating point power.

let x = 2.0_f64;
let abs_difference = (x.powf(2.0) - x*x).abs();

assert!(abs_difference < 1e-10);

Takes the square root of a number.

Returns NaN if self is a negative number.

let positive = 4.0_f64;
let negative = -4.0_f64;

let abs_difference = (positive.sqrt() - 2.0).abs();

assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());

Returns e^(self), (the exponential function).

let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);

Returns 2^(self).

let f = 2.0_f64;

// 2^2 - 4 == 0
let abs_difference = (f.exp2() - 4.0).abs();

assert!(abs_difference < 1e-10);

Returns the natural logarithm of the number.

let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);

Returns the logarithm of the number with respect to an arbitrary base.

let ten = 10.0_f64;
let two = 2.0_f64;

// log10(10) - 1 == 0
let abs_difference_10 = (ten.log(10.0) - 1.0).abs();

// log2(2) - 1 == 0
let abs_difference_2 = (two.log(2.0) - 1.0).abs();

assert!(abs_difference_10 < 1e-10);
assert!(abs_difference_2 < 1e-10);

Returns the base 2 logarithm of the number.

let two = 2.0_f64;

// log2(2) - 1 == 0
let abs_difference = (two.log2() - 1.0).abs();

assert!(abs_difference < 1e-10);

Returns the base 10 logarithm of the number.

let ten = 10.0_f64;

// log10(10) - 1 == 0
let abs_difference = (ten.log10() - 1.0).abs();

assert!(abs_difference < 1e-10);

Converts radians to degrees.

use std::f64::consts;

let angle = consts::PI;

let abs_difference = (angle.to_degrees() - 180.0).abs();

assert!(abs_difference < 1e-10);

Converts degrees to radians.

use std::f64::consts;

let angle = 180.0_f64;

let abs_difference = (angle.to_radians() - consts::PI).abs();

assert!(abs_difference < 1e-10);

Deprecated since 1.11.0: never really came to fruition and easily implementable outside the standard library 🔬 This is a nightly-only experimental API. (float_extras #27752)pending integer conventions

Constructs a floating point number of x*2^exp.

#![feature(float_extras)]

// 3*2^2 - 12 == 0
let abs_difference = (f64::ldexp(3.0, 2) - 12.0).abs();

assert!(abs_difference < 1e-10);

Deprecated since 1.11.0: never really came to fruition and easily implementable outside the standard library 🔬 This is a nightly-only experimental API. (float_extras #27752)pending integer conventions

Breaks the number into a normalized fraction and a base-2 exponent, satisfying:

  • self = x * 2^exp
  • 0.5 <= abs(x) < 1.0
#![feature(float_extras)]

let x = 4.0_f64;

// (1/2)*2^3 -> 1 * 8/2 -> 4.0
let f = x.frexp();
let abs_difference_0 = (f.0 - 0.5).abs();
let abs_difference_1 = (f.1 as f64 - 3.0).abs();

assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);

Deprecated since 1.11.0: never really came to fruition and easily implementable outside the standard library 🔬 This is a nightly-only experimental API. (float_extras #27752)unsure about its place in the world

Returns the next representable floating-point value in the direction of other.

#![feature(float_extras)]

let x = 1.0f64;

let abs_diff = (x.next_after(2.0) - 1.0000000000000002220446049250313_f64).abs();

assert!(abs_diff < 1e-10);

Returns the maximum of the two numbers.

let x = 1.0_f64;
let y = 2.0_f64;

assert_eq!(x.max(y), y);

If one of the arguments is NaN, then the other argument is returned.

Returns the minimum of the two numbers.

let x = 1.0_f64;
let y = 2.0_f64;

assert_eq!(x.min(y), x);

If one of the arguments is NaN, then the other argument is returned.

Deprecated since 1.10.0: you probably meant (self - other).abs(): this operation is (self - other).max(0.0) (also known as fdim in C). If you truly need the positive difference, consider using that expression or the C function fdim, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).

The positive difference of two numbers.

  • If self <= other: 0:0
  • Else: self - other
let x = 3.0_f64;
let y = -3.0_f64;

let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

Takes the cubic root of a number.

let x = 8.0_f64;

// x^(1/3) - 2 == 0
let abs_difference = (x.cbrt() - 2.0).abs();

assert!(abs_difference < 1e-10);

Calculates the length of the hypotenuse of a right-angle triangle given legs of length x and y.

let x = 2.0_f64;
let y = 3.0_f64;

// sqrt(x^2 + y^2)
let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();

assert!(abs_difference < 1e-10);

Computes the sine of a number (in radians).

use std::f64;

let x = f64::consts::PI/2.0;

let abs_difference = (x.sin() - 1.0).abs();

assert!(abs_difference < 1e-10);

Computes the cosine of a number (in radians).

use std::f64;

let x = 2.0*f64::consts::PI;

let abs_difference = (x.cos() - 1.0).abs();

assert!(abs_difference < 1e-10);

Computes the tangent of a number (in radians).

use std::f64;

let x = f64::consts::PI/4.0;
let abs_difference = (x.tan() - 1.0).abs();

assert!(abs_difference < 1e-14);

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

use std::f64;

let f = f64::consts::PI / 2.0;

// asin(sin(pi/2))
let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();

assert!(abs_difference < 1e-10);

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].

use std::f64;

let f = f64::consts::PI / 4.0;

// acos(cos(pi/4))
let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();

assert!(abs_difference < 1e-10);

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];

let f = 1.0_f64;

// atan(tan(1))
let abs_difference = (f.tan().atan() - 1.0).abs();

assert!(abs_difference < 1e-10);

Computes the four quadrant arctangent of self (y) and other (x).

  • x = 0, y = 0: 0
  • x >= 0: arctan(y/x) -> [-pi/2, pi/2]
  • y >= 0: arctan(y/x) + pi -> (pi/2, pi]
  • y < 0: arctan(y/x) - pi -> (-pi, -pi/2)
use std::f64;

let pi = f64::consts::PI;
// All angles from horizontal right (+x)
// 45 deg counter-clockwise
let x1 = 3.0_f64;
let y1 = -3.0_f64;

// 135 deg clockwise
let x2 = -3.0_f64;
let y2 = 3.0_f64;

let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();

assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);

Simultaneously computes the sine and cosine of the number, x. Returns (sin(x), cos(x)).

use std::f64;

let x = f64::consts::PI/4.0;
let f = x.sin_cos();

let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();

assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);

Returns e^(self) - 1 in a way that is accurate even if the number is close to zero.

let x = 7.0_f64;

// e^(ln(7)) - 1
let abs_difference = (x.ln().exp_m1() - 6.0).abs();

assert!(abs_difference < 1e-10);

Returns ln(1+n) (natural logarithm) more accurately than if the operations were performed separately.

use std::f64;

let x = f64::consts::E - 1.0;

// ln(1 + (e - 1)) == ln(e) == 1
let abs_difference = (x.ln_1p() - 1.0).abs();

assert!(abs_difference < 1e-10);

Hyperbolic sine function.

use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;

let f = x.sinh();
// Solving sinh() at 1 gives `(e^2-1)/(2e)`
let g = (e*e - 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

assert!(abs_difference < 1e-10);

Hyperbolic cosine function.

use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;
let f = x.cosh();
// Solving cosh() at 1 gives this result
let g = (e*e + 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

// Same result
assert!(abs_difference < 1.0e-10);

Hyperbolic tangent function.

use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;

let f = x.tanh();
// Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
let abs_difference = (f - g).abs();

assert!(abs_difference < 1.0e-10);

Inverse hyperbolic sine function.

let x = 1.0_f64;
let f = x.sinh().asinh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);

Inverse hyperbolic cosine function.

let x = 1.0_f64;
let f = x.cosh().acosh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);

Inverse hyperbolic tangent function.

use std::f64;

let e = f64::consts::E;
let f = e.tanh().atanh();

let abs_difference = (f - e).abs();

assert!(abs_difference < 1.0e-10);

Trait Implementations

impl PartialEq<f64> for f64 [src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl One for f64 [src]

Deprecated since 1.11.0: no longer used for Iterator::product 🔬 This is a nightly-only experimental API. (zero_one #27739)unsure of placement, wants to use associated constants

The "one" (usually, multiplicative identity) for this type.

impl RemAssign<f64> for f64
1.8.0
[src]

The method for the %= operator

impl Default for f64 [src]

Returns the "default value" for a type. Read more

impl Clone for f64 [src]

Returns a deep copy of the value.

Performs copy-assignment from source. Read more

impl LowerExp for f64 [src]

Formats the value using the given formatter.

impl DivAssign<f64> for f64
1.8.0
[src]

The method for the /= operator

impl Display for f64 [src]

Formats the value using the given formatter.

impl Product<f64> for f64
1.12.0
[src]

Method which takes an iterator and generates Self from the elements by multiplying the items. Read more

impl<'a> Product<&'a f64> for f64
1.12.0
[src]

Method which takes an iterator and generates Self from the elements by multiplying the items. Read more

impl FromStr for f64 [src]

The associated error which can be returned from parsing.

Converts a string in base 10 to a float. Accepts an optional decimal exponent.

This function accepts strings such as

  • '3.14'
  • '-3.14'
  • '2.5E10', or equivalently, '2.5e10'
  • '2.5E-10'
  • '.' (understood as 0)
  • '5.'
  • '.5', or, equivalently, '0.5'
  • 'inf', '-inf', 'NaN'

Leading and trailing whitespace represent an error.

Arguments

  • src - A string

Return value

Err(ParseFloatError) if the string did not represent a valid number. Otherwise, Ok(n) where n is the floating-point number represented by src.

impl MulAssign<f64> for f64
1.8.0
[src]

The method for the *= operator

impl Sum<f64> for f64
1.12.0
[src]

Method which takes an iterator and generates Self from the elements by "summing up" the items. Read more

impl<'a> Sum<&'a f64> for f64
1.12.0
[src]

Method which takes an iterator and generates Self from the elements by "summing up" the items. Read more

impl From<i8> for f64
1.5.0
[src]

Performs the conversion.

impl From<i16> for f64
1.5.0
[src]

Performs the conversion.

impl From<i32> for f64
1.5.0
[src]

Performs the conversion.

impl From<u8> for f64
1.5.0
[src]

Performs the conversion.

impl From<u16> for f64
1.5.0
[src]

Performs the conversion.

impl From<u32> for f64
1.5.0
[src]

Performs the conversion.

impl From<f32> for f64
1.5.0
[src]

Performs the conversion.

impl Neg for f64 [src]

The resulting type after applying the - operator

The method for the unary - operator

impl<'a> Neg for &'a f64 [src]

The resulting type after applying the - operator

The method for the unary - operator

impl Rem<f64> for f64 [src]

The resulting type after applying the % operator

The method for the % operator

impl<'a> Rem<f64> for &'a f64 [src]

The resulting type after applying the % operator

The method for the % operator

impl<'a> Rem<&'a f64> for f64 [src]

The resulting type after applying the % operator

The method for the % operator

impl<'a, 'b> Rem<&'a f64> for &'b f64 [src]

The resulting type after applying the % operator

The method for the % operator

impl Div<f64> for f64 [src]

The resulting type after applying the / operator

The method for the / operator

impl<'a> Div<f64> for &'a f64 [src]

The resulting type after applying the / operator

The method for the / operator

impl<'a> Div<&'a f64> for f64 [src]

The resulting type after applying the / operator

The method for the / operator

impl<'a, 'b> Div<&'a f64> for &'b f64 [src]

The resulting type after applying the / operator

The method for the / operator

impl Mul<f64> for f64 [src]

The resulting type after applying the * operator

The method for the * operator

impl<'a> Mul<f64> for &'a f64 [src]

The resulting type after applying the * operator

The method for the * operator

impl<'a> Mul<&'a f64> for f64 [src]

The resulting type after applying the * operator

The method for the * operator

impl<'a, 'b> Mul<&'a f64> for &'b f64 [src]

The resulting type after applying the * operator

The method for the * operator

impl Debug for f64 [src]

Formats the value using the given formatter.

impl SubAssign<f64> for f64
1.8.0
[src]

The method for the -= operator

impl Sub<f64> for f64 [src]

The resulting type after applying the - operator

The method for the - operator

impl<'a> Sub<f64> for &'a f64 [src]

The resulting type after applying the - operator

The method for the - operator

impl<'a> Sub<&'a f64> for f64 [src]

The resulting type after applying the - operator

The method for the - operator

impl<'a, 'b> Sub<&'a f64> for &'b f64 [src]

The resulting type after applying the - operator

The method for the - operator

impl Add<f64> for f64 [src]

The resulting type after applying the + operator

The method for the + operator

impl<'a> Add<f64> for &'a f64 [src]

The resulting type after applying the + operator

The method for the + operator

impl<'a> Add<&'a f64> for f64 [src]

The resulting type after applying the + operator

The method for the + operator

impl<'a, 'b> Add<&'a f64> for &'b f64 [src]

The resulting type after applying the + operator

The method for the + operator

impl Zero for f64 [src]

Deprecated since 1.11.0: no longer used for Iterator::sum 🔬 This is a nightly-only experimental API. (zero_one #27739)unsure of placement, wants to use associated constants

The "zero" (usually, additive identity) for this type.

impl AddAssign<f64> for f64
1.8.0
[src]

The method for the += operator

impl UpperExp for f64 [src]

Formats the value using the given formatter.

impl PartialOrd<f64> for f64 [src]

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/primitive.f64.html