pub struct HashMap<K, V, S = RandomState> { /* fields omitted */ }
A hash map implementation which uses linear probing with Robin Hood bucket stealing.
By default, HashMap
uses a hashing algorithm selected to provide resistance against HashDoS attacks. The algorithm is randomly seeded, and a reasonable best-effort is made to generate this seed from a high quality, secure source of randomness provided by the host without blocking the program. Because of this, the randomness of the seed is dependant on the quality of the system's random number generator at the time it is created. In particular, seeds generated when the system's entropy pool is abnormally low such as during system boot may be of a lower quality.
The default hashing algorithm is currently SipHash 1-3, though this is subject to change at any point in the future. While its performance is very competitive for medium sized keys, other hashing algorithms will outperform it for small keys such as integers as well as large keys such as long strings, though those algorithms will typically not protect against attacks such as HashDoS.
The hashing algorithm can be replaced on a per-HashMap
basis using the HashMap::default
, HashMap::with_hasher
, and HashMap::with_capacity_and_hasher
methods. Many alternative algorithms are available on crates.io, such as the fnv
crate.
It is required that the keys implement the Eq
and Hash
traits, although this can frequently be achieved by using #[derive(PartialEq, Eq, Hash)]
. If you implement these yourself, it is important that the following property holds:
k1 == k2 -> hash(k1) == hash(k2)
In other words, if two keys are equal, their hashes must be equal.
It is a logic error for a key to be modified in such a way that the key's hash, as determined by the Hash
trait, or its equality, as determined by the Eq
trait, changes while it is in the map. This is normally only possible through Cell
, RefCell
, global state, I/O, or unsafe code.
Relevant papers/articles:
use std::collections::HashMap; // type inference lets us omit an explicit type signature (which // would be `HashMap<&str, &str>` in this example). let mut book_reviews = HashMap::new(); // review some books. book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book."); book_reviews.insert("Grimms' Fairy Tales", "Masterpiece."); book_reviews.insert("Pride and Prejudice", "Very enjoyable."); book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot."); // check for a specific one. if !book_reviews.contains_key("Les Misérables") { println!("We've got {} reviews, but Les Misérables ain't one.", book_reviews.len()); } // oops, this review has a lot of spelling mistakes, let's delete it. book_reviews.remove("The Adventures of Sherlock Holmes"); // look up the values associated with some keys. let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; for book in &to_find { match book_reviews.get(book) { Some(review) => println!("{}: {}", book, review), None => println!("{} is unreviewed.", book) } } // iterate over everything. for (book, review) in &book_reviews { println!("{}: \"{}\"", book, review); }
HashMap
also implements an Entry API
, which allows for more complex methods of getting, setting, updating and removing keys and their values:
use std::collections::HashMap; // type inference lets us omit an explicit type signature (which // would be `HashMap<&str, u8>` in this example). let mut player_stats = HashMap::new(); fn random_stat_buff() -> u8 { // could actually return some random value here - let's just return // some fixed value for now 42 } // insert a key only if it doesn't already exist player_stats.entry("health").or_insert(100); // insert a key using a function that provides a new value only if it // doesn't already exist player_stats.entry("defence").or_insert_with(random_stat_buff); // update a key, guarding against the key possibly not being set let stat = player_stats.entry("attack").or_insert(100); *stat += random_stat_buff();
The easiest way to use HashMap
with a custom type as key is to derive Eq
and Hash
. We must also derive PartialEq
.
use std::collections::HashMap; #[derive(Hash, Eq, PartialEq, Debug)] struct Viking { name: String, country: String, } impl Viking { /// Create a new Viking. fn new(name: &str, country: &str) -> Viking { Viking { name: name.to_string(), country: country.to_string() } } } // Use a HashMap to store the vikings' health points. let mut vikings = HashMap::new(); vikings.insert(Viking::new("Einar", "Norway"), 25); vikings.insert(Viking::new("Olaf", "Denmark"), 24); vikings.insert(Viking::new("Harald", "Iceland"), 12); // Use derived implementation to print the status of the vikings. for (viking, health) in &vikings { println!("{:?} has {} hp", viking, health); }
A HashMap with fixed list of elements can be initialized from an array:
use std::collections::HashMap; fn main() { let timber_resources: HashMap<&str, i32> = [("Norway", 100), ("Denmark", 50), ("Iceland", 10)] .iter().cloned().collect(); // use the values stored in map }
impl<K: Hash + Eq, V> HashMap<K, V, RandomState>
[src]
fn new() -> HashMap<K, V, RandomState>
Creates an empty HashMap
.
use std::collections::HashMap; let mut map: HashMap<&str, isize> = HashMap::new();
fn with_capacity(capacity: usize) -> HashMap<K, V, RandomState>
Creates an empty HashMap
with the specified capacity.
The hash map will be able to hold at least capacity
elements without reallocating. If capacity
is 0, the hash map will not allocate.
use std::collections::HashMap; let mut map: HashMap<&str, isize> = HashMap::with_capacity(10);
impl<K, V, S> HashMap<K, V, S> where K: Eq + Hash, S: BuildHasher
[src]
fn with_hasher(hash_builder: S) -> HashMap<K, V, S>
Creates an empty HashMap
which will use the given hash builder to hash keys.
The created map has the default initial capacity.
Warning: hash_builder
is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.
use std::collections::HashMap; use std::collections::hash_map::RandomState; let s = RandomState::new(); let mut map = HashMap::with_hasher(s); map.insert(1, 2);
fn with_capacity_and_hasher(capacity: usize,
hash_builder: S)
-> HashMap<K, V, S>
Creates an empty HashMap
with the specified capacity, using hasher
to hash the keys.
The hash map will be able to hold at least capacity
elements without reallocating. If capacity
is 0, the hash map will not allocate. Warning: hasher
is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.
use std::collections::HashMap; use std::collections::hash_map::RandomState; let s = RandomState::new(); let mut map = HashMap::with_capacity_and_hasher(10, s); map.insert(1, 2);
fn hasher(&self) -> &S
Returns a reference to the map's hasher.
fn capacity(&self) -> usize
Returns the number of elements the map can hold without reallocating.
This number is a lower bound; the HashMap<K, V>
might be able to hold more, but is guaranteed to be able to hold at least this many.
use std::collections::HashMap; let map: HashMap<isize, isize> = HashMap::with_capacity(100); assert!(map.capacity() >= 100);
fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional
more elements to be inserted in the HashMap
. The collection may reserve more space to avoid frequent reallocations.
Panics if the new allocation size overflows usize
.
use std::collections::HashMap; let mut map: HashMap<&str, isize> = HashMap::new(); map.reserve(10);
fn shrink_to_fit(&mut self)
Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
use std::collections::HashMap; let mut map: HashMap<isize, isize> = HashMap::with_capacity(100); map.insert(1, 2); map.insert(3, 4); assert!(map.capacity() >= 100); map.shrink_to_fit(); assert!(map.capacity() >= 2);
fn keys(&self) -> Keys<K, V>
An iterator visiting all keys in arbitrary order. Iterator element type is &'a K
.
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); for key in map.keys() { println!("{}", key); }
fn values(&self) -> Values<K, V>
An iterator visiting all values in arbitrary order. Iterator element type is &'a V
.
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); for val in map.values() { println!("{}", val); }
fn values_mut(&mut self) -> ValuesMut<K, V>
An iterator visiting all values mutably in arbitrary order. Iterator element type is &'a mut V
.
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); for val in map.values_mut() { *val = *val + 10; } for val in map.values() { println!("{}", val); }
fn iter(&self) -> Iter<K, V>
An iterator visiting all key-value pairs in arbitrary order. Iterator element type is (&'a K, &'a V)
.
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); for (key, val) in map.iter() { println!("key: {} val: {}", key, val); }
fn iter_mut(&mut self) -> IterMut<K, V>
An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. Iterator element type is (&'a K, &'a mut V)
.
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); // Update all values for (_, val) in map.iter_mut() { *val *= 2; } for (key, val) in &map { println!("key: {} val: {}", key, val); }
fn entry(&mut self, key: K) -> Entry<K, V>
Gets the given key's corresponding entry in the map for in-place manipulation.
use std::collections::HashMap; let mut letters = HashMap::new(); for ch in "a short treatise on fungi".chars() { let counter = letters.entry(ch).or_insert(0); *counter += 1; } assert_eq!(letters[&'s'], 2); assert_eq!(letters[&'t'], 3); assert_eq!(letters[&'u'], 1); assert_eq!(letters.get(&'y'), None);
fn len(&self) -> usize
Returns the number of elements in the map.
use std::collections::HashMap; let mut a = HashMap::new(); assert_eq!(a.len(), 0); a.insert(1, "a"); assert_eq!(a.len(), 1);
fn is_empty(&self) -> bool
Returns true if the map contains no elements.
use std::collections::HashMap; let mut a = HashMap::new(); assert!(a.is_empty()); a.insert(1, "a"); assert!(!a.is_empty());
fn drain(&mut self) -> Drain<K, V>
Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.
use std::collections::HashMap; let mut a = HashMap::new(); a.insert(1, "a"); a.insert(2, "b"); for (k, v) in a.drain().take(1) { assert!(k == 1 || k == 2); assert!(v == "a" || v == "b"); } assert!(a.is_empty());
fn clear(&mut self)
Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.
use std::collections::HashMap; let mut a = HashMap::new(); a.insert(1, "a"); a.clear(); assert!(a.is_empty());
fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> where K: Borrow<Q>, Q: Hash + Eq
Returns a reference to the value corresponding to the key.
The key may be any borrowed form of the map's key type, but Hash
and Eq
on the borrowed form must match those for the key type.
use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1, "a"); assert_eq!(map.get(&1), Some(&"a")); assert_eq!(map.get(&2), None);
fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool where K: Borrow<Q>, Q: Hash + Eq
Returns true if the map contains a value for the specified key.
The key may be any borrowed form of the map's key type, but Hash
and Eq
on the borrowed form must match those for the key type.
use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1, "a"); assert_eq!(map.contains_key(&1), true); assert_eq!(map.contains_key(&2), false);
fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V> where K: Borrow<Q>, Q: Hash + Eq
Returns a mutable reference to the value corresponding to the key.
The key may be any borrowed form of the map's key type, but Hash
and Eq
on the borrowed form must match those for the key type.
use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1, "a"); if let Some(x) = map.get_mut(&1) { *x = "b"; } assert_eq!(map[&1], "b");
fn insert(&mut self, k: K, v: V) -> Option<V>
Inserts a key-value pair into the map.
If the map did not have this key present, None
is returned.
If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be ==
without being identical. See the module-level documentation for more.
use std::collections::HashMap; let mut map = HashMap::new(); assert_eq!(map.insert(37, "a"), None); assert_eq!(map.is_empty(), false); map.insert(37, "b"); assert_eq!(map.insert(37, "c"), Some("b")); assert_eq!(map[&37], "c");
fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> where K: Borrow<Q>, Q: Hash + Eq
Removes a key from the map, returning the value at the key if the key was previously in the map.
The key may be any borrowed form of the map's key type, but Hash
and Eq
on the borrowed form must match those for the key type.
use std::collections::HashMap; let mut map = HashMap::new(); map.insert(1, "a"); assert_eq!(map.remove(&1), Some("a")); assert_eq!(map.remove(&1), None);
impl<K: Clone, V: Clone, S: Clone> Clone for HashMap<K, V, S>
[src]
fn clone(&self) -> HashMap<K, V, S>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
impl<K, V, S> PartialEq for HashMap<K, V, S> where K: Eq + Hash,
V: PartialEq,
S: BuildHasher
[src]
fn eq(&self, other: &HashMap<K, V, S>) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
This method tests for !=
.
impl<K, V, S> Eq for HashMap<K, V, S> where K: Eq + Hash, V: Eq, S: BuildHasher
[src]
impl<K, V, S> Debug for HashMap<K, V, S> where K: Eq + Hash + Debug,
V: Debug,
S: BuildHasher
[src]
fn fmt(&self, f: &mut Formatter) -> Result
Formats the value using the given formatter.
impl<K, V, S> Default for HashMap<K, V, S> where K: Eq + Hash,
S: BuildHasher + Default
[src]
fn default() -> HashMap<K, V, S>
Creates an empty HashMap<K, V, S>
, with the Default
value for the hasher.
impl<'a, K, Q: ?Sized, V, S> Index<&'a Q> for HashMap<K, V, S> where K: Eq + Hash + Borrow<Q>,
Q: Eq + Hash,
S: BuildHasher
[src]
type Output = V
The returned type after indexing
fn index(&self, index: &Q) -> &V
The method for the indexing (container[index]
) operation
impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S> where K: Eq + Hash,
S: BuildHasher
[src]
type Item = (&'a K, &'a V)
The type of the elements being iterated over.
type IntoIter = Iter<'a, K, V>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Iter<'a, K, V>
Creates an iterator from a value. Read more
impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S> where K: Eq + Hash,
S: BuildHasher
[src]
type Item = (&'a K, &'a mut V)
The type of the elements being iterated over.
type IntoIter = IterMut<'a, K, V>
Which kind of iterator are we turning this into?
fn into_iter(self) -> IterMut<'a, K, V>
Creates an iterator from a value. Read more
impl<K, V, S> IntoIterator for HashMap<K, V, S> where K: Eq + Hash,
S: BuildHasher
[src]
type Item = (K, V)
The type of the elements being iterated over.
type IntoIter = IntoIter<K, V>
Which kind of iterator are we turning this into?
fn into_iter(self) -> IntoIter<K, V>
Creates a consuming iterator, that is, one that moves each key-value pair out of the map in arbitrary order. The map cannot be used after calling this.
use std::collections::HashMap; let mut map = HashMap::new(); map.insert("a", 1); map.insert("b", 2); map.insert("c", 3); // Not possible with .iter() let vec: Vec<(&str, isize)> = map.into_iter().collect();
impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S> where K: Eq + Hash,
S: BuildHasher + Default
[src]
fn from_iter<T: IntoIterator<Item=(K, V)>>(iter: T) -> HashMap<K, V, S>
Creates a value from an iterator. Read more
impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S> where K: Eq + Hash,
S: BuildHasher
[src]
fn extend<T: IntoIterator<Item=(K, V)>>(&mut self, iter: T)
Extends a collection with the contents of an iterator. Read more
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S> where K: Eq + Hash + Copy,
V: Copy,
S: BuildHasher
fn extend<T: IntoIterator<Item=(&'a K, &'a V)>>(&mut self, iter: T)
Extends a collection with the contents of an iterator. Read more
© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/collections/hash_map/struct.HashMap.html