EWM.cov(other=None, pairwise=None, bias=False, **kwargs) [source]
exponential weighted sample covariance
| Parameters: |
other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. bias : boolean, default False Use a standard estimation bias correction |
|---|---|
| Returns: |
same type as input |
See also
© 2011–2012 Lambda Foundry, Inc. and PyData Development Team
© 2008–2011 AQR Capital Management, LLC
© 2008–2014 the pandas development team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.19.2/generated/pandas.core.window.EWM.cov.html