class pandas.MultiIndex A multi-level, or hierarchical, index object for pandas objects
| Parameters: |
levels : sequence of arrays The unique labels for each level labels : sequence of arrays Integers for each level designating which label at each location sortorder : optional int Level of sortedness (must be lexicographically sorted by that level) names : optional sequence of objects Names for each of the index levels. (name is accepted for compat) copy : boolean, default False Copy the meta-data verify_integrity : boolean, default True Check that the levels/labels are consistent and valid |
|---|
T | return the transpose, which is by definition self |
asi8 | |
base | return the base object if the memory of the underlying data is |
data | return the data pointer of the underlying data |
dtype | |
dtype_str | |
flags | |
has_duplicates | |
hasnans | |
inferred_type | |
is_all_dates | |
is_monotonic | alias for is_monotonic_increasing (deprecated) |
is_monotonic_decreasing | return if the index is monotonic decreasing (only equal or |
is_monotonic_increasing | return if the index is monotonic increasing (only equal or |
is_unique | |
itemsize | return the size of the dtype of the item of the underlying data |
labels | |
levels | |
levshape | |
lexsort_depth | |
name | |
names | Names of levels in MultiIndex |
nbytes | |
ndim | return the number of dimensions of the underlying data, |
nlevels | |
shape | return a tuple of the shape of the underlying data |
size | return the number of elements in the underlying data |
strides | return the strides of the underlying data |
values |
all([other]) | |
any([other]) | |
append(other) | Append a collection of Index options together |
argmax([axis]) | return a ndarray of the maximum argument indexer |
argmin([axis]) | return a ndarray of the minimum argument indexer |
argsort(*args, **kwargs) | |
asof(label) | For a sorted index, return the most recent label up to and including the passed label. |
asof_locs(where, mask) | where : array of timestamps |
astype(dtype) | |
copy([names, dtype, levels, labels, deep, ...]) | Make a copy of this object. |
delete(loc) | Make new index with passed location deleted |
diff(*args, **kwargs) | |
difference(other) | Compute sorted set difference of two MultiIndex objects |
drop(labels[, level, errors]) | Make new MultiIndex with passed list of labels deleted |
drop_duplicates(*args, **kwargs) | Return Index with duplicate values removed |
droplevel([level]) | Return Index with requested level removed. |
duplicated(*args, **kwargs) | Return boolean np.array denoting duplicate values |
equal_levels(other) | Return True if the levels of both MultiIndex objects are the same |
equals(other) | Determines if two MultiIndex objects have the same labeling information |
factorize([sort, na_sentinel]) | Encode the object as an enumerated type or categorical variable |
fillna([value, downcast]) | Fill NA/NaN values with the specified value |
format([space, sparsify, adjoin, names, ...]) | |
from_arrays(arrays[, sortorder, names]) | Convert arrays to MultiIndex |
from_product(iterables[, sortorder, names]) | Make a MultiIndex from the cartesian product of multiple iterables |
from_tuples(tuples[, sortorder, names]) | Convert list of tuples to MultiIndex |
get_duplicates() | |
get_indexer(target[, method, limit, tolerance]) | Compute indexer and mask for new index given the current index. |
get_indexer_for(target, **kwargs) | guaranteed return of an indexer even when non-unique |
get_indexer_non_unique(target) | return an indexer suitable for taking from a non unique index |
get_level_values(level) | Return vector of label values for requested level, equal to the length |
get_loc(key[, method]) | Get integer location, slice or boolean mask for requested label or tuple. |
get_loc_level(key[, level, drop_level]) | Get integer location slice for requested label or tuple |
get_locs(tup) | Given a tuple of slices/lists/labels/boolean indexer to a level-wise |
get_major_bounds([start, end, step, kind]) | For an ordered MultiIndex, compute the slice locations for input labels. |
get_slice_bound(label, side, kind) | |
get_value(series, key) | |
get_values() | return the underlying data as an ndarray |
groupby(to_groupby) | Group the index labels by a given array of values. |
holds_integer() | |
identical(other) | Similar to equals, but check that other comparable attributes are |
insert(loc, item) | Make new MultiIndex inserting new item at location |
intersection(other) | Form the intersection of two MultiIndex objects, sorting if possible |
is_(other) | More flexible, faster check like is but that works through views |
is_boolean() | |
is_categorical() | |
is_floating() | |
is_integer() | |
is_lexsorted() | Return True if the labels are lexicographically sorted |
is_lexsorted_for_tuple(tup) | Return True if we are correctly lexsorted given the passed tuple |
is_mixed() | |
is_numeric() | |
is_object() | |
is_type_compatible(kind) | |
isin(values[, level]) | Compute boolean array of whether each index value is found in the passed set of values. |
item() | return the first element of the underlying data as a python |
join(other[, how, level, return_indexers]) | this is an internal non-public method |
map(mapper) | Apply mapper function to its values. |
max() | The maximum value of the object |
memory_usage([deep]) | Memory usage of my values |
min() | The minimum value of the object |
nunique([dropna]) | Return number of unique elements in the object. |
order([return_indexer, ascending]) | Return sorted copy of Index |
putmask(mask, value) | return a new Index of the values set with the mask |
ravel([order]) | return an ndarray of the flattened values of the underlying data |
reindex(target[, method, level, limit, ...]) | Create index with target’s values (move/add/delete values as necessary) |
rename(names[, level, inplace]) | Set new names on index. |
reorder_levels(order) | Rearrange levels using input order. |
repeat(n, *args, **kwargs) | |
searchsorted(key[, side, sorter]) | Find indices where elements should be inserted to maintain order. |
set_labels(labels[, level, inplace, ...]) | Set new labels on MultiIndex. |
set_levels(levels[, level, inplace, ...]) | Set new levels on MultiIndex. |
set_names(names[, level, inplace]) | Set new names on index. |
set_value(arr, key, value) | Fast lookup of value from 1-dimensional ndarray. |
shift([periods, freq]) | Shift Index containing datetime objects by input number of periods and |
slice_indexer([start, end, step, kind]) | For an ordered Index, compute the slice indexer for input labels and |
slice_locs([start, end, step, kind]) | For an ordered MultiIndex, compute the slice locations for input labels. |
sort(*args, **kwargs) | |
sort_values([return_indexer, ascending]) | Return sorted copy of Index |
sortlevel([level, ascending, sort_remaining]) | Sort MultiIndex at the requested level. |
str | alias of StringMethods
|
summary([name]) | |
swaplevel([i, j]) | Swap level i with level j. |
sym_diff(*args, **kwargs) | |
symmetric_difference(other[, result_name]) | Compute the sorted symmetric difference of two Index objects. |
take(indices[, axis, allow_fill, fill_value]) | return a new %(klass)s of the values selected by the indices |
to_datetime([dayfirst]) | For an Index containing strings or datetime.datetime objects, attempt |
to_hierarchical(n_repeat[, n_shuffle]) | Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle. |
to_native_types([slicer]) | slice and dice then format |
to_series(**kwargs) | Create a Series with both index and values equal to the index keys |
tolist() | return a list of the Index values |
transpose(*args, **kwargs) | return the transpose, which is by definition self |
truncate([before, after]) | Slice index between two labels / tuples, return new MultiIndex |
union(other) | Form the union of two MultiIndex objects, sorting if possible |
unique() | Return array of unique values in the object. |
value_counts([normalize, sort, ascending, ...]) | Returns object containing counts of unique values. |
view([cls]) | this is defined as a copy with the same identity |
© 2011–2012 Lambda Foundry, Inc. and PyData Development Team
© 2008–2011 AQR Capital Management, LLC
© 2008–2014 the pandas development team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.MultiIndex.html