class pandas.CategoricalIndex Immutable Index implementing an ordered, sliceable set. CategoricalIndex represents a sparsely populated Index with an underlying Categorical.
New in version 0.16.1.
| Parameters: |
data : array-like or Categorical, (1-dimensional) categories : optional, array-like categories for the CategoricalIndex ordered : boolean, designating if the categories are ordered copy : bool Make a copy of input ndarray name : object Name to be stored in the index |
|---|
T | return the transpose, which is by definition self |
asi8 | |
base | return the base object if the memory of the underlying data is |
categories | |
codes | |
data | return the data pointer of the underlying data |
dtype | |
dtype_str | |
flags | |
has_duplicates | |
hasnans | |
inferred_type | |
is_all_dates | |
is_monotonic | alias for is_monotonic_increasing (deprecated) |
is_monotonic_decreasing | return if the index is monotonic decreasing (only equal or |
is_monotonic_increasing | return if the index is monotonic increasing (only equal or |
is_unique | |
itemsize | return the size of the dtype of the item of the underlying data |
name | |
names | |
nbytes | return the number of bytes in the underlying data |
ndim | return the number of dimensions of the underlying data, |
nlevels | |
ordered | |
shape | return a tuple of the shape of the underlying data |
size | return the number of elements in the underlying data |
strides | return the strides of the underlying data |
values | return the underlying data, which is a Categorical |
add_categories(*args, **kwargs) | Add new categories. |
all([other]) | |
any([other]) | |
append(other) | Append a collection of CategoricalIndex options together |
argmax([axis]) | return a ndarray of the maximum argument indexer |
argmin([axis]) | return a ndarray of the minimum argument indexer |
argsort(*args, **kwargs) | |
as_ordered(*args, **kwargs) | Sets the Categorical to be ordered |
as_unordered(*args, **kwargs) | Sets the Categorical to be unordered |
asof(label) | For a sorted index, return the most recent label up to and including the passed label. |
asof_locs(where, mask) | where : array of timestamps |
astype(dtype) | |
copy([name, deep, dtype]) | Make a copy of this object. |
delete(loc) | Make new Index with passed location(-s) deleted |
diff(*args, **kwargs) | |
difference(other) | Return a new Index with elements from the index that are not in other. |
drop(labels[, errors]) | Make new Index with passed list of labels deleted |
drop_duplicates(*args, **kwargs) | Return Index with duplicate values removed |
duplicated(*args, **kwargs) | Return boolean np.array denoting duplicate values |
equals(other) | Determines if two CategorialIndex objects contain the same elements. |
factorize([sort, na_sentinel]) | Encode the object as an enumerated type or categorical variable |
fillna(value[, downcast]) | Fill NA/NaN values with the specified value |
format([name, formatter]) | Render a string representation of the Index |
get_duplicates() | |
get_indexer(target[, method, limit, tolerance]) | Compute indexer and mask for new index given the current index. |
get_indexer_for(target, **kwargs) | guaranteed return of an indexer even when non-unique |
get_indexer_non_unique(target) | this is the same for a CategoricalIndex for get_indexer; the API |
get_level_values(level) | Return vector of label values for requested level, equal to the length |
get_loc(key[, method]) | Get integer location for requested label |
get_slice_bound(label, side, kind) | Calculate slice bound that corresponds to given label. |
get_value(series, key) | Fast lookup of value from 1-dimensional ndarray. |
get_values() | return the underlying data as an ndarray |
groupby(to_groupby) | Group the index labels by a given array of values. |
holds_integer() | |
identical(other) | Similar to equals, but check that other comparable attributes are |
insert(loc, item) | Make new Index inserting new item at location. |
intersection(other) | Form the intersection of two Index objects. |
is_(other) | More flexible, faster check like is but that works through views |
is_boolean() | |
is_categorical() | |
is_floating() | |
is_integer() | |
is_lexsorted_for_tuple(tup) | |
is_mixed() | |
is_numeric() | |
is_object() | |
is_type_compatible(kind) | |
isin(values[, level]) | Compute boolean array of whether each index value is found in the passed set of values. |
item() | return the first element of the underlying data as a python |
join(other[, how, level, return_indexers]) | this is an internal non-public method |
map(mapper) | Apply mapper function to its categories (not codes). |
max(*args, **kwargs) | The maximum value of the object. |
memory_usage([deep]) | Memory usage of my values |
min(*args, **kwargs) | The minimum value of the object. |
nunique([dropna]) | Return number of unique elements in the object. |
order([return_indexer, ascending]) | Return sorted copy of Index |
putmask(mask, value) | return a new Index of the values set with the mask |
ravel([order]) | return an ndarray of the flattened values of the underlying data |
reindex(target[, method, level, limit, ...]) | Create index with target’s values (move/add/delete values as necessary) |
remove_categories(*args, **kwargs) | Removes the specified categories. |
remove_unused_categories(*args, **kwargs) | Removes categories which are not used. |
rename(name[, inplace]) | Set new names on index. |
rename_categories(*args, **kwargs) | Renames categories. |
reorder_categories(*args, **kwargs) | Reorders categories as specified in new_categories. |
repeat(n, *args, **kwargs) | Repeat elements of an Index. |
searchsorted(key[, side, sorter]) | Find indices where elements should be inserted to maintain order. |
set_categories(*args, **kwargs) | Sets the categories to the specified new_categories. |
set_names(names[, level, inplace]) | Set new names on index. |
set_value(arr, key, value) | Fast lookup of value from 1-dimensional ndarray. |
shift([periods, freq]) | Shift Index containing datetime objects by input number of periods and |
slice_indexer([start, end, step, kind]) | For an ordered Index, compute the slice indexer for input labels and |
slice_locs([start, end, step, kind]) | Compute slice locations for input labels. |
sort(*args, **kwargs) | |
sort_values([return_indexer, ascending]) | Return sorted copy of Index |
sortlevel([level, ascending, sort_remaining]) | For internal compatibility with with the Index API |
str | alias of StringMethods
|
summary([name]) | |
sym_diff(*args, **kwargs) | |
symmetric_difference(other[, result_name]) | Compute the sorted symmetric difference of two Index objects. |
take(indices[, axis, allow_fill, fill_value]) | return a new %(klass)s of the values selected by the indices |
to_datetime([dayfirst]) | For an Index containing strings or datetime.datetime objects, attempt |
to_native_types([slicer]) | slice and dice then format |
to_series(**kwargs) | Create a Series with both index and values equal to the index keys |
tolist() | return a list of the Index values |
transpose(*args, **kwargs) | return the transpose, which is by definition self |
union(other) | Form the union of two Index objects and sorts if possible. |
unique() | Return array of unique values in the object. |
value_counts([normalize, sort, ascending, ...]) | Returns object containing counts of unique values. |
view([cls]) |
© 2011–2012 Lambda Foundry, Inc. and PyData Development Team
© 2008–2011 AQR Capital Management, LLC
© 2008–2014 the pandas development team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.CategoricalIndex.html