numpy.random.dirichlet(alpha, size=None)Draw samples from the Dirichlet distribution.
Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. Dirichlet pdf is the conjugate prior of a multinomial in Bayesian inference.
| Parameters: |
alpha : array Parameter of the distribution (k dimension for sample of dimension k). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., |
|---|---|
| Returns: |
samples : ndarray, The drawn samples, of shape (size, alpha.ndim). |

Uses the following property for computation: for each dimension, draw a random sample y_i from a standard gamma generator of shape alpha_i, then
is Dirichlet distributed.
| [R214] | David McKay, “Information Theory, Inference and Learning Algorithms,” chapter 23, http://www.inference.phy.cam.ac.uk/mackay/ |
| [R215] | Wikipedia, “Dirichlet distribution”, http://en.wikipedia.org/wiki/Dirichlet_distribution |
Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces.
>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()
>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")
© 2008–2016 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.random.dirichlet.html