Defined in header
<type_traits> | ||
---|---|---|
template< class > class result_of; // not defined template< class F, class... ArgTypes > class result_of<F(ArgTypes...)>; | (since C++11) |
Deduces the return type of a function call expression at compile time.
F must be a callable type, reference to function, or reference to callable type. Invoking F with ArgTypes... must be a well-formed expression | (since C++11) |
F and all types in ArgTypes can be any complete type, array of unknown bound, or (cv-qualified) void | (since C++14) |
Member type | Definition |
---|---|
type | the return type of the Callable type F if invoked with the arguments ArgTypes... . Only defined if F can be called with the arguments ArgTypes... in unevaluated context. (since C++14) |
template< class T > using result_of_t = typename result_of<T>::type; | (since C++14) |
namespace detail { template <class F, class... Args> inline auto INVOKE(F&& f, Args&&... args) -> decltype(forward<F>(f)(forward<Args>(args)...)) { return forward<F>(f)(forward<Args>(args)...); } template <class Base, class T, class Derived> inline auto INVOKE(T Base::*pmd, Derived&& ref) -> decltype(forward<Derived>(ref).*pmd) { return forward<Derived>(ref).*pmd; } template <class PMD, class Pointer> inline auto INVOKE(PMD&& pmd, Pointer&& ptr) -> decltype((*forward<Pointer>(ptr)).*forward<PMD>(pmd)) { return (*forward<Pointer>(ptr)).*forward<PMD>(pmd); } template <class Base, class T, class Derived, class... Args> inline auto INVOKE(T Base::*pmf, Derived&& ref, Args&&... args) -> decltype((forward<Derived>(ref).*pmf)(forward<Args>(args)...)) { return (forward<Derived>(ref).*pmf)(forward<Args>(args)...); } template <class PMF, class Pointer, class... Args> inline auto INVOKE(PMF&& pmf, Pointer&& ptr, Args&&... args) -> decltype(((*forward<Pointer>(ptr)).*forward<PMF>(pmf))(forward<Args>(args)...)) { return ((*forward<Pointer>(ptr)).*forward<PMF>(pmf))(forward<Args>(args)...); } } // namespace detail // Minimal C++11 implementation: template <class> struct result_of; template <class F, class... ArgTypes> struct result_of<F(ArgTypes...)> { using type = decltype(detail::INVOKE(std::declval<F>(), std::declval<ArgTypes>()...)); }; // Conforming C++14 implementation (is also a valid C++11 implementation): namespace detail { template <typename, typename = void> struct result_of {}; template <typename F, typename...Args> struct result_of<F(Args...), decltype(void(detail::INVOKE(std::declval<F>(), std::declval<Args>()...)))> { using type = decltype(detail::INVOKE(std::declval<F>(), std::declval<Args>()...)); }; } // namespace detail template <class> struct result_of; template <class F, class... ArgTypes> struct result_of<F(ArgTypes...)> : detail::result_of<F(ArgTypes...)> {};
As formulated in C++11, the behavior is undefined when INVOKE(std::declval<F>(), std::declval<ArgTypes>()...)
is ill-formed (e.g. when F is not a callable type at all). C++14 changes that to a SFINAE (when F is not callable, std::result_of<F(ArgTypes...)>
simply doesn't have the type
member).
The motivation behind std::result_of
is to determine the result of invoking a Callable
, in particular if that result type is different for different sets of arguments.
F(Args...)
is a function type with Args...
being the argument types and F
being the return type. As such, F
cannot be a function type (but can be a reference to a function type).
#include <type_traits> #include <iostream> struct S { double operator()(char, int&); float operator()(int) { return 1.0;} }; template<class T> typename std::result_of<T(int)>::type f(T& t) { std::cout << "overload of f for callable T\n"; return t(0); } template<class T, class U> int f(U u) { std::cout << "overload of f for non-callable T\n"; return u; } int main() { // the result of invoking S with char and int& arguments is double std::result_of<S(char, int&)>::type d = 3.14; // d has type double static_assert(std::is_same<decltype(d), double>::value, ""); // the result of invoking S with int argument is float std::result_of<S(int)>::type x = 3.14; // f has type float static_assert(std::is_same<decltype(x), float>::value, ""); // result_of can be used with a pointer to member function as follows struct C { double Func(char, int&); }; std::result_of<decltype(&C::Func)(C, char, int&)>::type g = 3.14; static_assert(std::is_same<decltype(g), double>::value, ""); f<C>(1); // may fail to compile in C++11; calls the non-callable overload in C++14 }
Output:
overload of f for non-callable T
(C++17)
| invokes any Callable object with given arguments (function template) |
(C++17)
| checks if a type can be invoked (as if by std::invoke ) with the given argument types (class template) |
(C++11)
| obtains a reference to its argument for use in unevaluated context (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/types/result_of