double assoc_legendre( unsigned int n, unsigned int m, double x ); double assoc_legendre( unsigned int n, unsigned int m, float x ); double assoc_legendre( unsigned int n, unsigned int m, long double x ); float assoc_legendref( unsigned int n, unsigned int m, float x ); long double assoc_legendrel( unsigned int n, unsigned int m, long double x ); | (1) | (since C++17) |
double assoc_legendre( unsigned int n, unsigned int m, Integral x ); | (2) | (since C++17) |
double
.n | - | the degree of the polynomial, a value of unsigned integer type |
m | - | the order of the polynomial, a value of unsigned integer type |
x | - | the argument, a value of a floating-point or integral type |
x
, that is (1-x2dm |
dxm |
std::legendre(n, x)
). Note that the Condon-Shortley phase term (-1)m
is omitted from this definition.
Errors may be reported as specified in math_errhandling.
n
is greater or equal to 128, the behavior is implementation-defined. Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math as boost::math::legendre_p
, except that the boost.math definition includes the Condon-Shortley phase term.
The first few associated Legendre polynomials are:
1 |
2 |
#include <cmath> #include <iostream> double P20(double x) { return 0.5*(3*x*x-1); } double P21(double x) { return -3.0*x*std::sqrt(1-x*x); } double P22(double x) { return 3*(1-x*x); } int main() { // spot-checks std::cout << std::assoc_legendre(2, 0, 0.5) << '=' << P20(0.5) << '\n' << std::assoc_legendre(2, 1, 0.5) << '=' << P21(0.5) << '\n' << std::assoc_legendre(2, 2, 0.5) << '=' << P22(0.5) << '\n'; }
Output:
-0.125=-0.125 -1.29904=-1.29904 2.25=2.25
(C++17)(C++17)(C++17)
| Legendre polynomials (function) |
Weisstein, Eric W. "Associated Legendre Polynomial." From MathWorld--A Wolfram Web Resource.
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/special_math/assoc_legendre