Defined in header
<complex> | ||
---|---|---|
template< class T > class complex; | (1) | |
template<> class complex<float>; | (2) | |
template<> class complex<double>; | (3) | |
template<> class complex<long double>; | (4) |
The specializations std::complex<float>
, std::complex<double>
, and std::complex<long double>
are LiteralType
s for representing and manipulating complex numbers.
The effect of instantiating the template complex
for any other type is unspecified.
Member type | Definition |
---|---|
value_type | T |
constructs a complex number (public member function) |
|
assigns the contents (public member function) |
|
accesses the real part of the complex number (public member function) |
|
accesses the imaginary part of the complex number (public member function) |
|
compound assignment of two complex numbers or a complex and a scalar (public member function) |
applies unary operators to complex numbers (function template) |
|
performs complex number arithmetics on two complex values or a complex and a scalar (function template) |
|
compares two complex numbers or a complex and a scalar (function template) |
|
serializes and deserializes a complex number (function template) |
|
returns the real component (function template) |
|
returns the imaginary component (function template) |
|
returns the magnitude of a complex number (function template) |
|
returns the phase angle (function template) |
|
returns the squared magnitude (function template) |
|
returns the complex conjugate (function template) |
|
(C++11)
| returns the projection onto the Riemann sphere (function template) |
constructs a complex number from magnitude and phase angle (function template) |
|
Exponential functions |
|
complex base e exponential (function template) |
|
complex natural logarithm with the branch cuts along the negative real axis (function template) |
|
complex common logarithm with the branch cuts along the negative real axis (function template) |
|
Power functions |
|
complex power, one or both arguments may be a complex number (function template) |
|
complex square root in the range of the right half-plane (function template) |
|
Trigonometric functions |
|
computes sine of a complex number (sin(z)) (function template) |
|
computes cosine of a complex number (cos(z)) (function template) |
|
computes tangent of a complex number (tan(z)) (function template) |
|
(C++11)
| computes arc sine of a complex number (arcsin(z)) (function template) |
(C++11)
| computes arc cosine of a complex number (arccos(z)) (function template) |
(C++11)
| computes arc tangent of a complex number (arctan(z)) (function template) |
Hyperbolic functions |
|
computes hyperbolic sine of a complex number (sh(z)) (function template) |
|
computes hyperbolic cosine of a complex number (ch(z)) (function template) |
|
computes hyperbolic tangent of a complex number (function template) |
|
(C++11)
| computes area hyperbolic sine of a complex number (function template) |
(C++11)
| computes area hyperbolic cosine of a complex number (function template) |
(C++11)
| computes area hyperbolic tangent of a complex number (function template) |
For any object For any pointer to an element of an array of These requirements essentially limit implementation of each of the three specializations of The intent of this requirement is to preserve binary compatibility between the C++ library complex number types and the C language complex number types (and arrays thereof), which have an identical object representation requirement. | (since C++11) |
Defined in inline namespace std::literals::complex_literals |
|
---|---|
A std::complex literal representing pure imaginary number (function) |
#include <iostream> #include <iomanip> #include <complex> #include <cmath> int main() { using namespace std::complex_literals; std::cout << std::fixed << std::setprecision(1); std::complex<double> z1 = 1i * 1i; // imaginary unit squared std::cout << "i * i = " << z1 << '\n'; std::complex<double> z2 = std::pow(1i, 2); // imaginary unit squared std::cout << "pow(i, 2) = " << z2 << '\n'; double PI = std::acos(-1); std::complex<double> z3 = std::exp(1i * PI); // Euler's formula std::cout << "exp(i * pi) = " << z3 << '\n'; std::complex<double> z4 = 1. + 2i, z5 = 1. - 2i; // conjugates std::cout << "(1+2i)*(1-2i) = " << z4*z5 << '\n'; }
Output:
i * i = (-1.0,0.0) pow(i, 2) = (-1.0,0.0) exp(i * pi) = (-1.0,0.0) (1+2i)*(1-2i) = (5.0,0.0)
C documentation for Complex number arithmetic |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/complex