W3cubDocs

/C++

std::unique_ptr::operator=

members of the primary template, unique_ptr<T>
unique_ptr& operator=( unique_ptr&& r );
(1)
template< class U, class E >
unique_ptr& operator=( unique_ptr<U,E>&& r );
(1)
unique_ptr& operator=( nullptr_t );
(2)
members of the specialization for arrays, unique_ptr<T[]>
unique_ptr& operator=( unique_ptr&& r );
(1)
template< class U, class E >
unique_ptr& operator=( unique_ptr<U,E>&& r );
(1) (since C++17)
unique_ptr& operator=( nullptr_t );
(2)
1) Transfers ownership from r to *this as if by calling reset(r.release()) followed by an assignment of get_deleter() from std::forward<E>(r.get_deleter()).
If Deleter is not a reference type, requires that it is nothrow-MoveAssignable.
If Deleter is a reference type, requires that std::remove_reference<Deleter>::type is nothrow-CopyAssignable.
The template version of this assignment operator only participates in overload resolution if U is not an array type and unique_ptr<U,E>::pointer is implicitly convertible to pointer and std::is_assignable<Deleter&, E&&>::value is true (since C++17).
The template version of this assignment operator in the specialization for arrays, std::unique_ptr<T[]> behaves the same as in the primary template, except that will only participate in overload resolution if all of the following is true:
* U is an array type
* pointer is the same type as element_type*
* unique_ptr<U,E>::pointer is the same type as unique_ptr<U,E>::element_type*
* unique_ptr<U,E>::element_type(*)[] is convertible to element_type(*)[]
* std::is_assignable<Deleter&, E&&>::value is true
(since C++17)
2) Effectively the same as calling reset().

Note that unique_ptr's assignment operator only accepts rvalues, which are typically generated by std::move. (The unique_ptr class explicitly deletes its lvalue copy constructor and lvalue assignment operator.).

Parameters

r - smart pointer from which ownership will be transfered

Return value

*this.

Exceptions

noexcept specification:
noexcept

Example

#include <iostream>
#include <memory>
 
struct Foo {
    Foo() { std::cout << "Foo\n"; }
    ~Foo() { std::cout << "~Foo\n"; }
};
 
int main() 
{
    std::unique_ptr<Foo> p1;
 
    {
        std::cout << "Creating new Foo...\n";
        std::unique_ptr<Foo> p2(new Foo);
        // p1 = p2; // Error ! can't copy unique_ptr
        p1 = std::move(p2);
        std::cout << "About to leave inner block...\n";
 
        // Foo instance will continue to live, 
        // despite p2 going out of scope
    }
 
    std::cout << "About to leave program...\n";
}

Output:

Creating new Foo...
Foo
About to leave inner block...
About to leave program...
~Foo

© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/memory/unique_ptr/operator=