The storage class specifiers are a part of the decl-specifier-seq of a name's declaration syntax. Together with the scope of the name, they control two independent properties of the name: Its storage duration and its linkage.
| (until C++11) |
| (until C++17) |
static
- static or thread storage duration and internal linkage extern
- static or thread storage duration and external linkage
| (since C++11) |
Only one storage class specifier may appear in a declaration except that thread_local
may be combined with static
or with extern
(since C++11).
1) The
auto specifier was only allowed for objects declared at block scope or in function parameter lists. It indicated automatic storage duration, which is the default for these kinds of declarations. The meaning of this keyword was changed in C++11. | (until C++11) |
2) The
register specifier is only allowed for objects declared at block scope and in function parameter lists. It indicates automatic storage duration, which is the default for these kinds of declarations. Additionally, the presence of this keyword may be used as a hint for the optimizer to store the value of this variable in a CPU register. This keyword was deprecated in C++11. | (until C++17) |
static
specifier is only allowed in the declarations of objects (except in function parameter lists), declarations of functions (except at block scope), and declarations of anonymous unions. When used in a declaration of a class member, it declares a static member. When used in a declaration of an object, it specifies static storage duration (except if accompanied by thread_local
). When used in a declaration at namespace scope, it specifies internal linkage.extern
specifier is only allowed in the declarations of variables and functions (except class members or function parameters). It specifies external linkage, and does not technically affect storage duration, but it cannot be used in a definition of an automatic storage duration object, so all extern
objects have static or thread durations. In addition, a variable declaration that uses extern
and has no initializer is not a definition.
5) The
thread_local keyword is only allowed for objects declared at namespace scope, objects declared at block scope, and static data members. It indicates that the object has thread storage duration. It can be combined with static or extern to specify internal or external linkage (except for static data members which always have external linkage), respectively, but that additional static doesn't affect the storage duration. | (since C++11) |
All objects in a program have one of the following storage durations:
static
, extern
or thread_local
. static
or extern
.
| (since C++11) |
A name that denotes object, reference, function, type, template, namespace, or value, may have linkage. If a name has linkage, it refers to the same entity as the same name introduced by a declaration in another scope. If a variable, function, or another entity with the same name is declared in several scopes, but does not have sufficient linkage, then several instances of the entity are generated.
The following linkages are recognized:
extern
(regardless of the static
modifier) static
extern
and aren't previously declared to have external linkage. In addition, all names declared in unnamed namespace or a namespace within an unnamed namespace, even ones explicitly declared extern , have internal linkage. | (since C++11) |
static
, namespace-scope non-const variables not declared static
, and any variables declared extern
) static
) extern
Variables declared at block scope with the specifier static
have static storage duration but are initialized the first time control passes through their declaration (unless their initialization is zero- or constant-initialization, which can be performed before the block is first entered). On all further calls, the declaration is skipped.
If the initialization throws an exception, the variable is not considered to be initialized, and initialization will be attempted again the next time control passes through the declaration.
If the initialization recursively enters the block in which the variable is being initialized, the behavior is undefined.
If multiple threads attempt to initialize the same static local variable concurrently, the initialization occurs exactly once (similar behavior can be obtained for arbitrary functions with | (since C++11) |
The destructor for a block-scope static variable is called at program exit, but only if the initialization took place successfully.
Names at the top-level namespace scope (file scope in C) that are const
and not extern
have external linkage in C, but internal linkage in C++.
In C, the address of a | (until C++17) |
In C++, unlike C, variables cannot be declared | (since C++17) |
Names of thread_local
variables with internal or external linkage referred from different scopes may refer to the same or to different instances depending on whether the code is executing in the same or in different threads.
The extern
keyword can also be used to specify language linkage and explicit template instantiation declarations, but it's not a storage class specifier in those cases (except when a declaration is directly contained in a language linkage specification, in which case the declaration is treated as if it contains the extern
specifier).
The keyword mutable
is a storage class specifier in the C++ language grammar, although it doesn't affect storage duration or linkage.
Storage class specifiers, except for thread_local
, are not allowed on explicit specializations and explicit instantiations:
template <class T> struct S { thread_local static int tlm; }; template <> thread_local int S<float>::tlm = 0; // "static" does not appear here
auto
, register
, static
, extern
, thread_local
.
#include <iostream> #include <string> #include <thread> #include <mutex> thread_local unsigned int rage = 1; std::mutex cout_mutex; void increase_rage(const std::string& thread_name) { ++rage; // modifying outside a lock is okay; this is a thread-local variable std::lock_guard<std::mutex> lock(cout_mutex); std::cout << "Rage counter for " << thread_name << ": " << rage << '\n'; } int main() { std::thread a(increase_rage, "a"), b(increase_rage, "b"); { std::lock_guard<std::mutex> lock(cout_mutex); std::cout << "Rage counter for main: " << rage << '\n'; } a.join(); b.join(); }
Possible output:
Rage counter for a: 2 Rage counter for main: 1 Rage counter for b: 2
C documentation for storage_duration |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/language/storage_duration