Defines an expression that can be evaluated at compile time.
Such expressions can be used as non-type template arguments, array sizes, and in other contexts that require constant expressions, e.g.
int n = 1; std::array<int, n> a1; // error, n is not a constant expression const int cn = 2; std::array<int, cn> a2; // OK, cn is a constant expression
A core constant expression is any expression that does not have any one of the following in any subexpression (ignoring unevaluated expressions such as the operand of sizeof
or the right operand of builtin &&
when the left operand evaluates to false
).
constexpr int n = std::numeric_limits<int>::max(); // OK, max() is constexpr constexpr int m = std::time(NULL); // Error: std::time() is not constexpr
constexpr
function which is declared, but not defined, or a function call to a constexpr
function/constructor template instantiation where the instantiation fails to satisfy constexpr function/constructor requirements.constexpr
function with arguments that do not produce a constant expression when substituted constexpr const int* addr(const int& ir) { return &ir; } static const int x = 5; constexpr const int* xp = addr(x); // OK constexpr const int* tp = addr(5); // error: &5 is not a constant expression
constexpr
constructor with arguments that do not produce constant expressions in member-initializer lists that are called from this function int x; struct A { constexpr A(bool b) : m(b?42:x) { } int m; }; constexpr int v = A(true).m; // OK constexpr int w = A(false).m; // error: non-const x
5) A function call to a recursive
constexpr function that would exceed compile-time recursion depth limit (implementation-defined) | (until C++14) |
5) an expression that would exceed the implementation-defined limits
| (since C++14) |
6) The this pointer, except if used for class member access inside a non-static member function
| (until C++14) |
6) The this pointer, except in a
constexpr function or a constexpr constructor that is being evaluated as part of the expression | (since C++14) |
7) An expression whose result is not mathematically defined or is out of range for its type.
constexpr double d1 = 2.0/1.0; // OK constexpr double d2 = 2.0/0.0; // Error: not defined constexpr int n = std::numeric_limits<int>::max() + 1; // Error: overflow | (until C++14) |
7) An expression whose evaluation leads to any form of core language (since C++17) undefined behavior (including signed integer overflow, division by zero, pointer arithmetic outside array bounds, etc). Whether standard library undefined behavior is detected is unspecified. (since C++17)
| (since C++14) |
8) A lambda expression
| (until C++17) |
int main() { const std::size_t tabsize = 50; int tab[tabsize]; // OK: tabsize is a constant expression std::size_t n = 50; const std::size_t sz = n; int tab2[sz]; // error: sz is not a constant expression // because sz is not initialized with a constant expression }
constexpr
or to its non-mutable subobject
d) has literal type and refers to a non-volatile temporary object, initialized with a constant expression
| (until C++14) |
d) has literal type and refers to a non-volatile object whose lifetime began within the evalution of this expression
| (since C++14) |
12) conversion from cv
void* to any pointer-to-object type | (since C++14) |
16) an increment or a decrement operator
| (until C++14) |
16) modification of an object, unless the object has non-volatile literal type and its lifetime began within the evalution of the expression
constexpr int incr(int& n) { return ++n; } constexpr int g(int k) { constexpr int x = incr(k); // error: incr(k) is not a core constant // expression because lifetime of k // began outside the expression incr(k) return x; } constexpr int h(int k) { int x = incr(k); // OK: x is not required to be initialized with a core // constant expression return x; } constexpr int y = h(1); // OK: initializes y with the value 2 // h(1) is a core constant expression because // the lifetime of k begins inside the expression h(1) | (since C++14) |
19) a subtraction operator between two pointers
| (until C++14) |
21) an assignment or a compount assignment operator
| (until C++14) |
this
or to a variable defined outside that lambda, if that reference would be an odr-use void g() { const int n=0; constexpr int j=*&n; // OK, outside of a lambda-expression [=]{ constexpr int i=n; // OK, 'n' is not odr-used and not captured here. constexpr int j=*&n;// Ill-formed, '&n' would be an odr-use of 'n'. }; }
note that if the ODR-use takes place in a function call to a closure, it does not refer to // OK: 'v' & 'm' are odr-used but do not occur in a constant-expression // within the nested lambda auto monad = [](auto v){return [=]{return v;};}; auto bind = [](auto m){return [=](auto fvm){return fvm(m());};}; // OK to have captures to automatic objects created during constant expression evaluation. static_assert(bind(monad(2))(monad)() == monad(2)()); | (since C++17) |
Integral constant expression is an expression of integral or unscoped enumeration type implicitly converted to a prvalue, where the converted expression is a core constant expression. If an expression of class type is used where an integral constant expression is expected, the expression is contextually implicitly converted to an integral or unscoped enumeration type. only integral constant expressions can be used as.
array bounds, the dimensions in new-expressions other than the first (until C++14), bit-field lengths, enumeration initializers when the underlying type is not fixed, null-pointer constants (until C++14), and alignments.A converted constant expression of type T
is an expression implicitly converted to type T, where the converted expression is a constant expression, and the implicit conversion sequence contains only:
| (since C++17) |
A contextually converted constant expression of type bool
is an expression, contextually converted to bool
, where the converted expression is a constant expression and the conversion sequence contains only the conversions above. Such expressions can be used in noexcept
specifications and static assert declarations.
Literal constant expression is a prvalue core constant expression of non-pointer literal type (after conversions as required by context). A literal constant expression of array or class type requires that each subobject is initialized with a constant expression.
Reference constant expression is an lvalue core constant expression that designates an object with static storage duration or a function.
Address constant expression is a prvalue core constant expression (after conversions required by context) of type std::nullptr_t
or of a pointer type, which points to an object with static storage duration, one past the end of an array with static storage duration, to a function, or is a null pointer.
Implementations are not permitted to declare library functions as constexpr unless the standard says the function is constexpr copy elision is mandatory in constant expressions. | (since C++14) |
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
CWG 2167 | C++14 | non-member references local to an evaluation were making the evaluation non-constexpr | non-member references allowed |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/language/constant_expression