This header is part of the pseudo-random number generation library.
Random number engines |
|
(C++11)
| implements linear congruential algorithm (class template) |
(C++11)
| implements Mersenne twister algorithm (class template) |
(C++11)
| implements subtract with carry (a lagged Fibonacci) algorithm (class template) |
Random number engine adaptors |
|
(C++11)
| discards some output of a random number engine (class template) |
(C++11)
| packs the output of a random number engine into blocks of specified number of bits (class template) |
(C++11)
| delivers the output of a random number engine in different order (class template) |
Predefined generators |
|
(C++11)
| general-purpose bias-eliminating scrambled seed sequence generator (class) |
minstd_rand0 | std::linear_congruential_engine<std::uint_fast32_t, 16807, 0, 2147483647> Discovered in 1969 by Lewis, Goodman and Miller, adopted as "Minimal standard" in 1988 by Park and Miller. |
minstd_rand | std::linear_congruential_engine<std::uint_fast32_t, 48271, 0, 2147483647> Newer "Minimum standard", recommended by Park, Miller, and Stockmeyer in 1993. |
mt19937 |
|
mt19937_64 |
|
ranlux24_base | std::subtract_with_carry_engine<std::uint_fast32_t, 24, 10, 24> |
ranlux48_base | std::subtract_with_carry_engine<std::uint_fast64_t, 48, 5, 12> |
ranlux24 | std::discard_block_engine<std::ranlux24_base, 223, 23> 24-bit RANLUX generator by Martin Lüscher and Fred James, 1994. |
ranlux48 | std::discard_block_engine<std::ranlux48_base, 389, 11> 48-bit RANLUX generator by Martin Lüscher and Fred James, 1994. |
knuth_b | std::shuffle_order_engine<std::minstd_rand0, 256> |
default_random_engine | implementation-defined |
Uniform distributions |
|
(C++11)
| produces integer values evenly distributed across a range (class template) |
(C++11)
| produces real values evenly distributed across a range (class template) |
Bernoulli distributions |
|
(C++11)
| produces bool values on a Bernoulli distribution. (class) |
(C++11)
| produces integer values on a binomial distribution. (class template) |
(C++11)
| produces integer values on a negative binomial distribution. (class template) |
(C++11)
| produces integer values on a geometric distribution. (class template) |
Poisson distributions |
|
(C++11)
| produces integer values on a poisson distribution. (class template) |
(C++11)
| produces real values on an exponential distribution. (class template) |
(C++11)
| produces real values on an gamma distribution. (class template) |
(C++11)
| produces real values on a Weibull distribution. (class template) |
(C++11)
| produces real values on an extreme value distribution. (class template) |
Normal distributions |
|
(C++11)
| produces real values on a standard normal (Gaussian) distribution. (class template) |
(C++11)
| produces real values on a lognormal distribution. (class template) |
(C++11)
| produces real values on a chi-squared distribution. (class template) |
(C++11)
| produces real values on a Cauchy distribution. (class template) |
(C++11)
| produces real values on a Fisher's F-distribution. (class template) |
(C++11)
| produces real values on a Student's t-distribution. (class template) |
Sampling distributions |
|
(C++11)
| produces random integers on a discrete distribution. (class template) |
(C++11)
| produces real values distributed on constant subintervals. (class template) |
(C++11)
| produces real values distributed on defined subintervals. (class template) |
(C++11)
| evenly distributes real values of given precision across [0, 1) (function template) |
#include <initializer_list> namespace std { // class template linear_congruential_engine template<class UIntType, UIntType a, UIntType c, UIntType m> class linear_congruential_engine; // class template mersenne_twister_engine template<class UIntType, size_t w, size_t n, size_t m, size_t r, UIntType a, size_t u, UintType d, size_t s, UIntType b, size_t t, UIntType c, size_t l, UintType f> class mersenne_twister_engine; // class template subtract_with_carry_engine template<class UIntType, size_t w, size_t s, size_t r> class subtract_with_carry_engine; // class template discard_block_engine template<class Engine, size_t p, size_t r> class discard_block_engine; // class template independent_bits_engine template<class Engine, size_t w, class UIntType> class independent_bits_engine; // class template shuffle_order_engine template<class Engine, size_t k> class shuffle_order_engine; // engines and engine adaptors with predefined parameters typedef linear_congruential_engine<uint_fast32_t, 16807, 0, 2147483647> minstd_rand0; typedef linear_congruential_engine<uint_fast32_t, 48271, 0, 2147483647> minstd_rand; typedef mersenne_twister_engine<uint_fast32_t, 32,624,397,31,0x9908b0df,11,0xffffffff,7,0x9d2c5680,15, 0xefc60000,18,1812433253> mt19937; typedef mersenne_twister_engine<uint_fast64_t, 64,312,156,31,0xb5026f5aa96619e9,29, 0x5555555555555555,17, 0x71d67fffeda60000,37, 0xfff7eee000000000,43, 6364136223846793005> mt19937_64; typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24> ranlux24_base; typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12> ranlux48_base; typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24; typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48; typedef shuffle_order_engine<minstd_rand0,256> knuth_b; typedef /*implementation-defined*/ default_random_engine; // class random_device class random_device; // class seed_seq class seed_seq; // function template generate_canonical template<class RealType, size_t bits, class URNG> RealType generate_canonical(URNG& g); // class template uniform_int_distribution template<class IntType = int> class uniform_int_distribution; // class template uniform_real_distribution template<class RealType = double> class uniform_real_distribution; // class bernoulli_distribution class bernoulli_distribution; // class template binomial_distribution template<class IntType = int> class binomial_distribution; // class template geometric_distribution template<class IntType = int> class geometric_distribution; // class template negative_binomial_distribution template<class IntType = int> class negative_binomial_distribution; // class template poisson_distribution template<class IntType = int> class poisson_distribution; // class template exponential_distribution template<class RealType = double> class exponential_distribution; // class template gamma_distribution template<class RealType = double> class gamma_distribution; // class template weibull_distribution template<class RealType = double> class weibull_distribution; // class template extreme_value_distribution template<class RealType = double> class extreme_value_distribution; // class template normal_distribution template<class RealType = double> class normal_distribution; // class template lognormal_distribution template<class RealType = double> class lognormal_distribution; // class template chi_squared_distribution template<class RealType = double> class chi_squared_distribution; // class template cauchy_distribution template<class RealType = double> class cauchy_distribution; // class template fisher_f_distribution template<class RealType = double> class fisher_f_distribution; // class template student_t_distribution template<class RealType = double> class student_t_distribution; // class template discrete_distribution template<class IntType = int> class discrete_distribution; // class template piecewise_constant_distribution template<class RealType = double> class piecewise_constant_distribution; // class template piecewise_linear_distribution template<class RealType = double> class piecewise_linear_distribution; } // namespace std
std::linear_congruential_engine
template<class UIntType, UIntType a, UIntType c, UIntType m> class linear_congruential_engine { public: // types typedef UIntType result_type; // engine characteristics static constexpr result_type multiplier = a; static constexpr result_type increment = c; static constexpr result_type modulus = m; static constexpr result_type min() { return c == 0u ? 1u: 0u }; static constexpr result_type max() { return m - 1u }; static constexpr result_type default_seed = 1u; // constructors and seeding functions explicit linear_congruential_engine(result_type s = default_seed); template<class Sseq> explicit linear_congruential_engine(Sseq& q); void seed(result_type s = default_seed); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); };
std::mersenne_twister_engine
template<class UIntType, size_t w, size_t n, size_t m, size_t r, UIntType a, size_t u, UIntType d, size_t s, UIntType b, size_t t, UIntType c, size_t l, UIntType f> class mersenne_twister_engine { public: // types typedef UIntType result_type; // engine characteristics static constexpr size_t word_size = w; static constexpr size_t state_size = n; static constexpr size_t shift_size = m; static constexpr size_t mask_bits = r; static constexpr UIntType xor_mask = a; static constexpr size_t tempering_u = u; static constexpr UIntType tempering_d = d; static constexpr size_t tempering_s = s; static constexpr UIntType tempering_b = b; static constexpr size_t tempering_t = t; static constexpr UIntType tempering_c = c; static constexpr size_t tempering_l = l; static constexpr UIntType initialization_multiplier = f; static constexpr result_type min () { return 0; } static constexpr result_type max() { return 2w − 1; } static constexpr result_type default_seed = 5489u; // constructors and seeding functions explicit mersenne_twister_engine(result_type value = default_seed); template<class Sseq> explicit mersenne_twister_engine(Sseq& q); void seed(result_type value = default_seed); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); };
std::subtract_with_carry_engine
template<class UIntType, size_t w, size_t s, size_t r> class subtract_with_carry_engine { public: // types typedef UIntType result_type; // engine characteristics static constexpr size_t word_size = w; static constexpr size_t short_lag = s; static constexpr size_t long_lag = r; static constexpr result_type min() { return 0; } static constexpr result_type max() { return m − 1; } static constexpr result_type default_seed = 19780503u; // constructors and seeding functions explicit subtract_with_carry_engine(result_type value = default_seed); template<class Sseq> explicit subtract_with_carry_engine(Sseq& q); void seed(result_type value = default_seed); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); };
std::discard_block_engine
template<class Engine, size_t p, size_t r> class discard_block_engine { public: // types typedef typename Engine::result_type result_type; // engine characteristics static constexpr size_t block_size = p; static constexpr size_t used_block = r; static constexpr result_type min() { return Engine::min(); } static constexpr result_type max() { return Engine::max(); } // constructors and seeding functions discard_block_engine(); explicit discard_block_engine(const Engine& e); explicit discard_block_engine(Engine&& e); explicit discard_block_engine(result_type s); template<class Sseq> explicit discard_block_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only int n; // exposition only };
std::independent_bits_engine
template<class Engine, size_t w, class UIntType> class independent_bits_engine { public: // types typedef UIntType result_type; // engine characteristics static constexpr result_type min() { return 0; } static constexpr result_type max() { return 2w - 1; } // constructors and seeding functions independent_bits_engine(); explicit independent_bits_engine(const Engine& e); explicit independent_bits_engine(Engine&& e); explicit independent_bits_engine(result_type s); template<class Sseq> explicit independent_bits_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only };
std::shuffle_order_engine
template<class Engine, size_t k> class shuffle_order_engine { public: // types typedef typename Engine::result_type result_type; // engine characteristics static constexpr size_t table_size = k; static constexpr result_type min() { return Engine::min(); } static constexpr result_type max() { return Engine::max(); } // constructors and seeding functions shuffle_order_engine(); explicit shuffle_order_engine(const Engine& e); explicit shuffle_order_engine(Engine&& e); explicit shuffle_order_engine(result_type s); template<class Sseq> explicit shuffle_order_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only result_type Y; // exposition only result_type V[k]; // exposition only };
std::random_device
class random_device { public: // types typedef unsigned int result_type; // generator characteristics static constexpr result_type min() { return numeric_limits<result_type>::min(); } static constexpr result_type max() { return numeric_limits<result_type>::max(); } // constructors explicit random_device(const string& token = implementation-defined); // generating functions result_type operator()(); // property functions double entropy() const noexcept; // no copy functions random_device(const random_device& ) = delete; void operator=(const random_device& ) = delete; };
std::seed_seq
class seed_seq { public: // types typedef uint_least32_t result_type; // constructors seed_seq(); template<class T> seed_seq(initializer_list<T> il); template<class InputIterator> seed_seq(InputIterator begin, InputIterator end); // generating functions template<class RandomAccessIterator> void generate(RandomAccessIterator begin, RandomAccessIterator end); // property functions size_t size() const; template<class OutputIterator> void param(OutputIterator dest) const; // no copy functions seed_seq(const seed_seq& ) = delete; void operator=(const seed_seq& ) = delete; private: vector<result_type> v; // exposition only };
std::uniform_int_distribution
template<class IntType = int> class uniform_int_distribution { public: // types typedef IntType result_type; typedef /*unspecified*/ param_type; // constructors and reset functions explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits<IntType>::max()); explicit uniform_int_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions result_type a() const; result_type b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::bernoulli_distribution
class bernoulli_distribution { public: // types typedef bool result_type; typedef /*unspecified*/ param_type; // constructors and reset functions explicit bernoulli_distribution(double p = 0.5); explicit bernoulli_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::binomial_distribution
template<class IntType = int> class binomial_distribution { public: // types typedef IntType result_type; typedef /*unspecified*/ param_type; // constructors and reset functions explicit binomial_distribution(IntType t = 1, double p = 0.5); explicit binomial_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions IntType t() const; double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::geometric_distribution
template<class IntType = int> class geometric_distribution { public: // types typedef IntType result_type; typedef /*unspecified*/ param_type; // constructors and reset functions explicit geometric_distribution(double p = 0.5); explicit geometric_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::negative_binomial_distribution
template<class IntType = int> class negative_binomial_distribution { public: // types typedef IntType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions explicit negative_binomial_distribution(IntType k = 1, double p = 0.5); explicit negative_binomial_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions IntType k() const; double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::poisson_distribution
template<class IntType = int> class poisson_distribution { public: // types typedef IntType result_type; typedef /*unspecified*/ param_type; // constructors and reset functions explicit poisson_distribution(double mean = 1.0); explicit poisson_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions double mean() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::seed_seq
template<class RealType = double> class exponential_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructors and reset functions explicit exponential_distribution(RealType lambda = 1.0); explicit exponential_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions RealType lambda() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::gamma_distribution
template<class RealType = double> class gamma_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructors and reset functions explicit gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0); explicit gamma_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions RealType alpha() const; RealType beta() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::weibull_distribution
template<class RealType = double> class weibull_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0) explicit weibull_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::extreme_value_distribution
template<class RealType = double> class extreme_value_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0); explicit extreme_value_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::normal_distribution
template<class RealType = double> class normal_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructors and reset functions explicit normal_distribution(RealType mean = 0.0, RealType stddev = 1.0); explicit normal_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions RealType mean() const; RealType stddev() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::lognormal_distribution
template<class RealType = double> class lognormal_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0); explicit lognormal_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions RealType m() const; RealType s() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::chi_squared_distribution
template<class RealType = double> class chi_squared_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions explicit chi_squared_distribution(RealType n = 1); explicit chi_squared_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions RealType n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::cauchy_distribution
template<class RealType = double> class cauchy_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0); explicit cauchy_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::fisher_f_distribution
template<class RealType = double> class fisher_f_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions explicit fisher_f_distribution(RealType m = 1, RealType n = 1); explicit fisher_f_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions RealType m() const; RealType n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::student_t_distribution
template<class RealType = double> class student_t_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions explicit student_t_distribution(RealType n = 1); explicit student_t_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions RealType n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::discrete_distribution
template<class IntType = int> class discrete_distribution { public: // types typedef IntType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions discrete_distribution(); template<class InputIterator> discrete_distribution(InputIterator firstW, InputIterator lastW); discrete_distribution(initializer_list<double> wl); template<class UnaryOperation> discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw); explicit discrete_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions vector<double> probabilities() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::piecewise_constant_distribution
template<class RealType = double> class piecewise_constant_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions piecewise_constant_distribution(); template<class InputIteratorB, class InputIteratorW> piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB, InputIteratorW firstW); template<class UnaryOperation> piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw); template<class UnaryOperation> piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw); explicit piecewise_constant_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions vector<result_type> intervals() const; vector<result_type> densities() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
std::piecewise_linear_distribution
template<class RealType = double> class piecewise_linear_distribution { public: // types typedef RealType result_type; typedef /*unspecified*/ param_type; // constructor and reset functions piecewise_linear_distribution(); template<class InputIteratorB, class InputIteratorW> piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB, InputIteratorW firstW); template<class UnaryOperation> piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw); template<class UnaryOperation> piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw); explicit piecewise_linear_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& g); template<class URNG> result_type operator()(URNG& g, const param_type& parm); // property functions vector<result_type> intervals() const; vector<result_type> densities() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/header/random