W3cubDocs

/C++

std::adjacent_difference

Defined in header <numeric>
template< class InputIt, class OutputIt >
OutputIt adjacent_difference( InputIt first, InputIt last, 
                              OutputIt d_first );
(1)
template< class ExecutionPolicy, class InputIt, class OutputIt >
OutputIt adjacent_difference( ExecutionPolicy&& policy, InputIt first, InputIt last, 
                              OutputIt d_first );
(2) (since C++17)
template< class InputIt, class OutputIt, class BinaryOperation >
OutputIt adjacent_difference( InputIt first, InputIt last, 
                              OutputIt d_first, BinaryOperation op );
(3)
template< class ExecutionPolicy, class InputIt, class OutputIt, class BinaryOperation >
OutputIt adjacent_difference( ExecutionPolicy&& policy, InputIt first, InputIt last, 
                              OutputIt d_first, BinaryOperation op );
(4) (since C++17)

Computes the differences between the second and the first of each adjacent pair of elements of the range [first, last) and writes them to the range beginning at d_first + 1. Unmodified copy of first is written to d_first.

1) Differences are calculated using operator-.
3) Differences are calculated using the given binary function op.
2,4) Same as (1,3), but executed according to policy. These overloads do not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true

Equivalent operation:

*(d_first)   = *first;
*(d_first+1) = *(first+1) - *(first);
*(d_first+2) = *(first+2) - *(first+1);
*(d_first+3) = *(first+3) - *(first+2);
...

op must not have side effects.

(until C++11)

op must not invalidate any iterators, including the end iterators, or modify any elements of the ranges involved.

(since C++11)

Parameters

first, last - the range of elements
d_first - the beginning of the destination range
policy - the execution policy to use. See execution policy for details.
op - binary operation function object that will be applied.

The signature of the function should be equivalent to the following:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const &.
The types Type1 and Type2 must be such that an object of type iterator_traits<InputIt>::value_type can be implicitly converted to both of them. The type Ret must be such that an object of type OutputIt can be dereferenced and assigned a value of type Ret. ​

Type requirements
- InputIt must meet the requirements of InputIterator.
- OutputIt must meet the requirements of OutputIterator.

Return value

It to the element past the last element written.

Notes

If first == last, this function has no effect and will merely return d_first.

Complexity

Exactly (last - first) - 1 applications of the binary operation.

Exceptions

The overloads with a template parameter named ExecutionPolicy report errors as follows:

  • If execution of a function invoked as part of the algorithm throws an exception, std::terminate is called.
  • If the algorithm fails to allocate memory, std::bad_alloc is thrown.

Possible implementation

First version
template<class InputIt, class OutputIt>
OutputIt adjacent_difference(InputIt first, InputIt last, 
                             OutputIt d_first)
{
    if (first == last) return d_first;
 
    typedef typename std::iterator_traits<InputIt>::value_type value_t;
    value_t acc = *first;
    *d_first = acc;
    while (++first != last) {
        value_t val = *first;
        *++d_first = val - acc;
        acc = std::move(val);
    }
    return ++d_first;
}
Second version
template<class InputIt, class OutputIt, class BinaryOperation>
OutputIt adjacent_difference(InputIt first, InputIt last, 
                             OutputIt d_first, BinaryOperation op)
{
    if (first == last) return d_first;
 
    typedef typename std::iterator_traits<InputIt>::value_type value_t;
    value_t acc = *first;
    *d_first = acc;
    while (++first != last) {
        value_t val = *first;
        *++d_first = op(val, acc);
        acc = std::move(val);
    }
    return ++d_first;
}

Example

The following code converts a sequence of even numbers to repetitions of the number 2 and converts a sequence of ones to a sequence of Fibonacci numbers.

​#include <numeric>
#include <vector>
#include <iostream>
#include <functional>
 
int main()
{
    std::vector<int> v{2, 4, 6, 8, 10, 12, 14, 16, 18, 20};
    std::adjacent_difference(v.begin(), v.end(), v.begin());
 
    for (auto n : v) {
        std::cout << n << ' ';
    }
    std::cout << '\n';
 
    v = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
    std::adjacent_difference(v.begin(), v.end() - 1, v.begin() + 1, std::plus<int>());
 
    for (auto n : v) {
        std::cout << n << ' ';
    }
    std::cout << '\n';
}​

Output:

2 2 2 2 2 2 2 2 2 2
1 1 2 3 5 8 13 21 34 55

See also

computes the partial sum of a range of elements
(function template)
sums up a range of elements
(function template)
parallelized version of std::adjacent_difference
(function template)

© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/algorithm/adjacent_difference